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Our work is founded on two mutually reinforcing goals:

Better AI/ML 
techniques

Understanding Brains
& Cognition



Retina LGN

V1

PIT

V4

V2

AIT

CIT

STP
a

7a STP
p

LIP FST

DP VOT

MIP PO MT

PIP V3A

V3

LGN

B

MST

V2

Latency

~15 M

~29 M

~37 M

Retina (RCG representation)~1 M

~150 M

~1 M

~190 M

(V1 representation)

(LGN representation)

~68 M

~10 M

(V2 representation)

(V4 representation)

(IT representation)

~36 M

~17 M

~16 M
~100 ms

~50 ms

~60 ms

~70 ms

~80 ms

~90 ms

~40 ms

A

V1

V4

PIT

CIT

AIT

Adapted from DiCarlo et al. 2012

The primate visual system as a hierarchical, convolutional neural network:

Computational Models of the Visual System
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To our knowledge best (in terms of neural prediction) feedforward model 
is a ~12-layer CNN

Computational Models of the Visual System



Computational Models of the Visual System

. . . trained on ImageNet Categorization. 

To our knowledge best (in terms of neural prediction) feedforward model 
is a ~12-layer CNN



The Problem

There’s just no way that these creatures receive millions of high-level semantic 
labels during learning. 

ImageNet is a pretty effective proxy, but just obviously deeply wrong. 



The Problem

There’s just no way that these creatures receive millions of high-level semantic 
labels during learning. 

ImageNet is a pretty effective proxy, but just obviously deeply wrong. 

Must find some sort of semi-, self-, or 
unsupervised loss function / task that is 

“realistically costly” to the creature but is 
sufficiently powerful that it constructs useful 

representations.  
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Self-supervised learning

L(x) = |x�O(H(x))|2 + � · |H(x)|
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parameters

(to some 
extent)

reconstruction
loss

complexity 
penalty

Olshausen & Field (1996)
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Self-supervised learning

Dynamics might give richer signal . . . but most passive video sequences are quite boring

fairly
trivial 

features

L(x) = |xt+1 �Decode(Encode(xt))|2 + � · Penalty(Encode(xt))



Children learn through play. 

How does this  
work?



Self-supervised learning

Give agent some kind of volition to take actions
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Give agent some kind of volition to take actions . . .  but now the agent will be lazy
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Self-supervised learning

Give agent some kind of volition to take actions . . .  but now the agent will be lazy

L(x) = |xaction

t+1

�Decode(Encode(xt))|2 + � · Penalty(Encode(xt))

+ Intrinsic Motivation
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The self-model directs the agent toward 
interesting actions — the ones that the world-

model doesn’t yet fully understand
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Environment
Agent

World

Model

e

Self
Model

learns to predict
the environment

learns to predict
own world-model

Perception

Action

curiosity

learning

more informed curiosity

The self-model directs the agent toward 
interesting actions — the ones that the world-

model doesn’t yet fully understand

A curiosity principle: 



Learning to Play

Nick Haber Damian Mrowca Fei-Fei LiStephanie Wang

NIPS 2018



Agent (“baby”) can (a) swivel its head
(b) move around the room
(c) apply forces to objects

. . . and receives back images of what happened, given action
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Learning to Play — Overview

(2) Self-Model



Goal of world-model:
“Post-dict” the action taken given past and future states and actions

o
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Goal of world-model:
“Post-dict” the action taken given past and future states and actions
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Learning to Play — World-Model

ID 
Inverse Dynamics



Learning to Play — Self-Model

Goal of self-model:  Predict errors (“loss”) of World-Model
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Learning to Play — Self-Model

Goal of self-model:  Predict errors (“loss”) of World-Model

o



Learning to Play - Model overview 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Learning to Play — Self-Model

Goal of self-model:  Predict errors (“loss”) of World-Model

o

Sample 1000x actions and choose the one that maximizes the World-Model loss

Policy mechanism



Goal of world-model network is to predict consequences of actions

Goal of self-model network is to predict errors of world-model (“self-aware”)

Action choice: self-model is adversarial to world-model (“curious intrinsic motivation”)
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Learning to Play — Adversarial Policy



Place agent in room with a single object. 
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At first, agent totally ignores the object, and 
focuses on learning ego-motion…
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But the curious agent eventually “gets 
bored” of ego-motion prediction and 
starts to focus on the object!

Object Presence
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Self-supervised learning
Simple navigation and planning behavior emerges … 

If an object is not in view, the agent turns to find one…
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… if an object is too far to touch, the agent moves toward one. 



Self-supervised learning
Simple navigation and planning behavior emerges … 

If an object is not in view, the agent turns to find one…

… if an object is too far to touch, the agent moves toward one. 

… and once the agent is close to an object, it stays close and interacts with it. 



Self-supervised learning

Moreover, substantially improved transfer learning accuracy: 

(a) object detection (present or not): ~8% vs ~40% accuracy

(b) object position:  ~6px  vs  ~4px error

(c) object recognition (among 16 geometries):  ~12%  vs ~30% accuracy

Simple navigation and planning behavior emerges … 
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One Object Frequency

 curious policy

When multiple objects are present, the 
agent at first recapitulates its behavior 
with a single object … 
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… but then discovers the interest of bringing objects together. 
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Object recognition in testing (one object per image):  ~16%  vs ~40% accuracy

. . .  especially large gain compared to training in single-obj case 
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Glossing over a key problem: 

The above ideas rely on having the agent solve 
a dynamics prediction problem about the 

world. 



Self-supervised learning: General Formulation

Start with some data H…



…Create input data X from H…
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…Create output data Y from H…

Self-supervised learning: General Formulation



…Predict Y from X.

Self-supervised learning: General Formulation
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Self-supervised learning: General Formulation

1) Forward future prediction

2) inverse dynamics prediction

state(t), action(t) ⟹ state(t+1)

state(t), state(t+1) ⟹ action(t)

1) is hard, because … pixel prediction is hard!



Intuitive Physics as Underlying Goal

Finn et. al (2016)

PredRNN(2017) ; Wang (2018) ; among many others

Obvious idea: just predict future pixels
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Intuitive Physics as Underlying Goal
Pixel prediction is hard. 

Two blue objects in a room
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Self-supervised learning: General Formulation

1) Forward future prediction

2) inverse dynamics prediction

state(t), action(t) ⟹ state(t+1)

state(t), state(t+1) ⟹ action(t)

1) is hard, because … pixel prediction is hard!

2) is mostly what we did in the previous work because it’s easier … 

BUT DEGENERATE!

possibly ill-defined

Ex:  pushing down on an object 

THE DREADED 
WHITE-NOISE PROBLEM



Examples: 

Self-supervised learning: General Formulation

1) Forward future prediction

2) inverse dynamics prediction

state(t), action(t) ⟹ state(t+1)

state(t), state(t+1) ⟹ action(t)

1) is hard, because … pixel prediction is hard!

2) is mostly what we did in the previous work because it’s easier … 

BUT DEGENERATE!

possibly ill-defined

Ex:  pushing down on an object 

THE DREADED 
WHITE-NOISE PROBLEM

Conclusion:   
we cannot escape having to do better

future prediction 
— so let’s attack the problem directly. 
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“Derendering”

t-n … t

Decoder

“Rendering”
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t → t+1

“Physics”

actions

Chengxu Zhuang*Damian Mrowca* Nick HaberEli Wang Fei-Fei Li Josh Tenenbaum

NIPS 2018



Encoder

“Encoding”

Decoder

“Rendering”

t → t+1

“Physics”

Discovering the proper latent space for 
physical prediction… 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present very early, perhaps by 3 months.
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Experimental results with infants: object permanence 
present very early …



Intuitive Physics as Underlying Goal

Conv2d structures, even with RNNs, have trouble with object permanence.

Liz Spelke

Experimental results with infants: object permanence 
present very early …



Intuitive Physics as Underlying Goal

Conv3d structures are better for object 
permanence, but very inefficient: hard to 
achieve high resolution. 

Liz Spelke

Experimental results with infants: object permanence 
present very early, perhaps by 3 months.



Spatial convolutions are not 
ideal for physics propagation
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Experimental results with infants: object permanence 
present very early, perhaps by 3 months.

Liz Spelke

Alternative to spatially-uniform priors are graph-based priors

Relational Networks 
(Battaglia et. al., 2016)



Intuitive Physics as Underlying Goal

Experimental results with infants: object permanence 
present very early, perhaps by 3 months.

Liz Spelke

Alternative to spatially-uniform priors are graph-based priors

Relational Networks 
(Battaglia et. al., 2016)

… still local and convolutional, just on the graph. 



Relational Networks 
(Battaglia et. al., 2016)

Neural Physics Engine
(Chang et. al., 2016)



Intuitive Physics as Underlying Goal

Complex Scenes Complex Materials
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Octahedron Prism Cylinder Ellipsoid

Sphere Mentos Stick Bowl

Cone Pentagon Domino Torus

Duck Bunny Teddy

Describe objects through complex graphs:
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In fact, describe whole scenes. 
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N = nodes corresponding to particles comprising objects

E = edges corresponding to relationships between particles

scene graph



Stairs Slope Half-Pipe

Plane Bowl Random Plane

In fact, describe whole scenes. 

G = hN,Ei

N = nodes corresponding to particles comprising objects

E = edges corresponding to relationships between particles

edges are labelled by vector capturing bond characteristics

scene graph



Intuitive Physics as Underlying Goal
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Intuitive Physics as Underlying Goal

...

Of course, humans don’t think about all the particles at once all the time. 

G 7�! GH

GH = dynamic “hierarchicalization” of underlying scene graph
(right now computed via k-means)



Intuitive Physics as Underlying Goal

...

Of course, humans don’t think about all the particles at once all the time. 

G 7�! GH

GH = dynamic “hierarchicalization” of underlying scene graph
(right now computed via k-means)

graph convolution → hierarchical graph convolution
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Intuitive Physics as Underlying Goal

Hierarchical graph convolution propagates interactions efficiently 
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Intuitive Physics as Underlying Goal
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Hierarchical Relational Network (HRN):

. . . generates momentum updates (P) from hierarchical graph state (G).



Intuitive Physics as Underlying Goal

ϕC

ϕF

Σ
ϕH

ψη Pt+1G(t-T,t]
H

Hierarchical Relational Network (HRN):

Network learns to interpret graph structure (including meaning of material-
vector edge labels)…

. . . generates momentum updates (P) from hierarchical graph state (G).
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rigid sphere rolling out of rigid bowl

floppy teddybear bouncing off floor and recovering
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in GT the tower does fall, but prediction falls too fast . . .
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Interactions between all material types are 
possible — as well as non-uniform materials — 

since the edge-labelled graph structure can 
accommodate them.
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Challenges:
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n

slinky

shape is not preserved super well over long rollouts… 

Easy to impose simple shape conversation rules — in a “per material” 
way.  (e.g. rigid different than cloth different than soft-body)

. . . less easy to understand how to do this in material-agnostic way. 



ConvRNN

Scene at time T = 0, 1, …, t

Object 1

Object 2

Object N
…

Physical graph of scene

Hierarchical 
Relation 
Network

Predictions of graph in future
t+1 t+2 t+3 t+4 t+5
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Challenges:

Extracting the graph description from video. 
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Human-centered feedback loop



Thanks!


