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Our work is founded on two mutually reinforcing goals:

Understanding Brains St an fo I'd Better AI/ML

& Cognitior g Neuro Al Lab techniques



Computational Models of the Visual System

The primate visual system as a hierarchical, convolutional neural network:

_l/F _l/P ~10M Latency
(IT representation)
AIT

A B
STP, ~100 ms
~16 M
[T 11
7a STP, CIT ~90 ms
~17 M
|
P | st |FsT PIT ~80 ms
~36 M
or ot ~15 M (V4 representation)
}vup PO | |MT ~/70ms
~68 M
PIP | V3A |
~29 M (V2 representation)
~60 ms
~150 M
Retina LGN ~37 M (V1 representation)
~50ms
~190 M
~1M (LGN representation) ~40 ms
LGN ﬁ

Retina ﬁ ~1M (RCG representation)

Adapted from DiCarlo et al. 2012



Computational Models of the Visual System

Visual Recognition Task

Spatial Convolution
over Image Input




Computational Models of the Visual System

Visual Recognition Task
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Computational Models of the Visual System

To our knowledge best (in terms of neural prediction) feedforward model
s a ~|2-layer CNN




Computational Models of the Visual System

To our knowledge best (in terms of neural prediction) feedforward model
s a ~|2-layer CNN

...trained on ImageNet Categorization.



The Problem

There’s just no way that these creatures receive millions of high-level semantic
labels during learning.

ImageNet Is a pretty effective proxy, but just obviously deeply wrong.



The Problem

There’s just no way that these creatures receive millions of high-level semantic
labels during learning.

Must find some sort of semi-, self
unsupervised loss function / task f
“realistically costly” to the creatut
sufficiently powerful that it cc
representation

ImageNet Is a pretty effective proxy, but just obviously deeply wrong.



Self-supervised learning

Olshausen & Field (1996) hidden /ayer
H(x) output layer
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Self-supervised learning

ornasen ARG (70 hidden layer
H(X) output layer
- 4 /
4
N
N

N

barameters
L(z) = |z — O(H(2))[" + X+ |H(x)

reconstruction complexity
loss penalty



Self-supervised learning

Olshausen & Field (1996) hidden /ayer
H(x) output layer
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Self-supervised learning

Dynamics might give richer signal

Time

a)UnIabeIedL g
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Self-supervised learning

Dynamics might give richer signal

Time
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Self-supervised learning

Dynamics might give richer signal ... but most passive video sequences are quite boring
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Children learn through play.

How does this
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Self-supervised learning

Give agent some kind of volition to take actions
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Self-supervised learning

Give agent some kind of volition to take actions
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Self-supervised learning

Give agent some kind of volition to take actions ... but now the agent will be lazy
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Agent
learns to predict
the environment

Environment




Agent
learns to predict
the environment
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A curiosity principle:

The self-model directs the agent toward
interesting actions — the ones that the world-
model doesn't yet fully understand

—~ Agent
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A curiosity principle:

The self-model directs the agent toward
interesting actions — the ones that the world-
model doesn't yet fully understand

—~ Agent
Perception /ora learns to predict
learning ‘. the environment

\\_Mode
( more informed curiosity
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Learning to Play

Nick Haber Damian Mrowca Stephanie Wang Fei-Fei Li

NIPS 2018

Learning to Play With Intrinsically-Motivated,
Self-Aware Agents

Nick Haber' 2%, Damian Mrowca*-, Stephanie Wang* , Li Fei-Fei* , and
Daniel L. K. Yamins' 45

Departments of Psychology’, Pediatrics?, Biomedical Data Science®, Computer Science®, and Wu
Tsai Neurosciences Institute®, Stanford, CA 94305

{nhaber, mrowca}@stanford.edu

Abstract

Infants arc experts at playing, with an amazing ability to generate novel structured
behaviors in unstructured environments that lack clear extrinsic reward signals.
We seek to mathematically formalize these abilities using a neural network that
implements cuniosity-driven intrinsic motivation. Using a simple but ecologically
naturalistic simulated environment in which an agent can move and interact with
objects it sees, we propose a “world-model” network that learns to predict the
dynamic consequences of the agent’s actions. Simultaneously, we train a separate
explicit “self-model” that allows the agent to track the error map of its world-
model. It then uses the sclf-model to adversarially challenge the developing
world-model. We demonstrate that this policy causes the agent to explore novel
and informative interactions with its environment, leading to the gencration of a
spectrum of complex behaviors, including ego-motion prediction, object attention,
and object gathering. Morcover, the world-model that the agent leams supports
improved performance on object dynamics prediction, detection, localization and
recognition tasks. Taken together, our results are initial steps toward creating
flexible autonomous agents that self-supervise in realistic physical eavironments.



Agent (“baby’) can (a) swivel its head
(b) move around the room

(c) apply forces to objects

...and recelves back images of what happened, given action



Learning to Play — Overview
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Learning to Play — Overview
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Learning to Play — World-Model

Goal of world-model:
“Post-dict” the action taken given past and future states and actions




Learning to Play — World-Model

Goal of world-model:
“Post-dict” the action taken given past and future states and actions
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Learning to Play — Self-Model

Goal of self~-model: Predict errors (“loss”) of World-Model




Learning to Play — Self-Model

Goal of self~-model: Predict errors (“loss”) of World-Model
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Learning to Play - Model overview
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Goal of world-model network is to predict consequences of actions

Goal of self-model network is to predict errors of world-model (“self-aware™)

40



Learning to Play — Self-Model

Goal of self~-model: Predict errors (“loss”) of World-Model
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Sample 1000x actions and choose the one that maximizes the World-Model loss

m(a) ~ exp(fon(a))

Policy mechanism



Learning to Play — Adversarial Policy

Action choice: self-model is adversarial to world-model (“curious intrinsic motivation™)
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Place agent in room with a single object.




Self-supervised learning

0e === CUrious policy === random policy
Ego motion

A learning
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Self-supervised learning

05 === CUrious policy === random policy
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Self-supervised learning
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Emergence of:

(a) ego-motion understanding
(b) object attention

(¢) improved world-model



Self-supervised learning

Simple navigation and planning behavior emerges ...

If an object is not In view, the agent turns to find one...
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Self-supervised learning

Simple navigation and planning behavior emerges ...

If an object is not In view, the agent turns to find one...

. If an object Is too far to touch, the agent moves toward one.
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Self-supervised learning

Simple navigation and planning behavior emerges ...
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If an object is not In view, the agent turns to find one...

. If an object Is too far to touch, the agent moves toward one.

... and once the agent Is close to an object, it stays close and interacts with It.



Self-supervised learning

Simple navigation and planning behavior emerges ...
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Moreover, substantially improved transfer learning accuracy:

(a) object detection (present or not): ~8% vs ~40% accuracy
(b) object position: ~6px vs ~4px error

(c) object recognition (among |6 geometries): ~12% vs ~30% accuracy



Self-supervised learning

Training Loss
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with a single object ...



Self-supervised learning

== Curious policy === random policy
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... but then discovers the interest of bringing objects together.



Self-supervised learning

Training Loss

Fraction of Frames

== Curious policy

=== random policy
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Object recognition in testing (one object per image): ~16% vs ~40% accuracy

. especially large gain compared to training in single-obj case



Glossing over a key problem:
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Self-supervised learning: General Formulation

H

Start with some data H...



Self-supervised learning: General Formulation

H

...Create input data X from H...



Self-supervised learning: General Formulation

H
§ d

X Y

...Create output data Y from H...



Self-supervised learning: General Formulation

...PredictY from X



Self-supervised learning: General Formulation

H Examples:

g " nt [ ) Forward future prediction
state(t), action(t) = state(t+1)



Self-supervised learning: General Formulation

H Examples:

|) Forward future prediction
g " 77t ) future p
state(t), action(t) = state(t+1)
llllllllllllllllllll } , , .
; ( 9, 4 Y Z) inverse dynamics prediction

state(t), state(t+ 1) = action(t)



Self-supervised learning: General Formulation

H Examples:

|') Forward future prediction
g " nt ) future p
state(t), action(t) = state(t+1)
4: ( """" wt """" > Y 2) inverse dynamics prediction

state(t), state(t+ 1) = action(t)

[ ) is hard, because ... pixel prediction is hard!



Inturtive Physics as Underlying Goal

Obvious i1dea: just predict future pixels

Finn et. al (2016)
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PredRNIN(2017) ;Wang (2018) ; among many others



Inturtive Physics as Underlying Goal

Pixel prediction is hard.

Two blue objects in a room




Inturtive Physics as Underlying Goal

Pixel prediction is hard.

Two blue objects in a room

Objects acted on and camera moves



Inturtive Physics as Underlying Goal

Pixel prediction is hard.

t=|

Two blue objects in a room

Objects acted on and camera moves
t=5 t=6

Ground
truth




Inturtive Physics as Underlying Goal

Pixel prediction is hard.

t=|

Two blue objects in a room

Objects acted on and camera moves
t=6




Self-supervised learning: General Formulation

H Examples:

g " nt [ ) Forward future prediction

state(t), action(t) = state(t+1)

4: ( wt" Y 2) inverse dynamics prediction

state(t), state(t+1) = action(t)

[ ) is hard, because ... pixel prediction is hard!

Z) is mostly what we did in the work described above because it's easier ...



Self-supervised learning: General Formulation

H Examples:

g " nt [ ) Forward future prediction

state(t), action(t) = state(t+1)

4: ( wt" Y 2) inverse dynamics prediction

state(t), state(t+1) = action(t)

[ ) is hard, because ... pixel prediction is hard!

Z) is mostly what we did in the work described above because it's easier ...

BUT DEGENERATE!



Self-supervised learning: General Formulation

Examples:

g " nt [ ) Forward future prediction
state(t), action(t) = state(t+1)

X S Y Z) inverse dynamics prediction
"

possibly ill-defined

TLIE DREADED state(t), state(t+ 1) = action(t)

[ ) is hard, because ... pixel prediction is hard!

Z) is mostly what we did in the work described above because it's easier ...

BUT DEGENERATE!



Self-supervised learning: General Formulation

Examples:

g " nt [ ) Forward future prediction
state(t), action(t) = state(t+1)

X S Y Z) inverse dynamics prediction
"

possibly ill-defined

TLIE DREADED state(t), state(t+ 1) = action(t)

[ ) is hard, because ... pixel prediction is hard!

Z) is mostly what we did in the previous work because it's easier ...

BUT DEGENERATE!

Ex: pushing down on an object



Self-supervised learning: General Formulation

Examples:

H :

gt nt | ) Forward future prediction
state(t), action(t) = state(t+1)
X"""llw||\ _

THE DREAD
WHITE-NOISE PROBLEM

rediction

action(t)

| ) is hard, because ... pixel prediction is hard!

2) is mostly what we did in the previous work because it's easier ...

BUT DEGENERATE!

Ex: pushing down on an object



Damian Mrowca* Chengxu Zhuang* Eli Wang Nick Haber Fei-Fei Li

Flexible Neural Representation for Physics Prediction

Damian Mrowca'-, Chengxu Zhuang” , Elias Wang®*, Nick Haber”** , Li Fei-Fei'
Joshua B. Tenenbaum™* , and Daniel L. K. Yamins'*°

Department of Computer Spicnce' , Psychology?, Electrical Enging:ering“. Pediatrics® and
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Department of Brain and Cognitive Sciences’, and Computer Science and Artificial Intelligence
Laboratory®, MIT, Cambridge, MA 02139

t_n {mrowca, chengxuz, eliwangl}@stanford.edu
H E N

Abstract

Humans have a remarkable capacity to understand the physical dynamics of objects
in their environment, flexibly capturing complex structures and interactions at
multiple levels of detail. Inspired by this ability, we propose a hierarchical particle-
based object representation that covers a wide variety of types of three-dimensional
objects, including both arbitrary rigid geometrical shapes and deformable materi-
als. We then describe the Hierarchical Relation Network (HRN), an end-to-end
differentiable neural network based on hierarchical graph convolution, that leams
to predict physical dynamics in this representation. Compared to other neural
network baselines, the HRN accurately handles complex collisions and nonrigid
deformations, generating plausible dynamics predictions at long time scales in
novel settings, and scaling to large scene configurations. These results demonstrate
an architecture with the potential to form the basis of next-generation physics
predictors for use in computer vision. robotics. and guantitative cognitive science.

NIPS 2018

Josh Tenenbaum

1...1+k



Discovering the proper latent space for
physical prediction. ..

"Encoding” "Physics” "Rendering”
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Inturtive Physics as Underlying Goal

Experimental results with infants: object permanence
present very early, perhaps by 3 months.

Liz Spelke



Inturtive Physics as Underlying Goal

Experimental results with infants: object permanence
present very early ...

Cognition
Volume 20, Issue 3, 1985, Pages 191-208

Liz Spelke
Object permanence in five-month-old infants

Renée Baillargeon A*, Elizabeth S. Spelke *, Stanley Wasserman °

Show more

https://doi.org/10.1016/0010-0277(85)90008-3 Get rights and content



Inturtive Physics as Underlying Goal

Liz Spelke

Experimental results with infants: object permanence
present very early ...

Cognition
Volume 20, Issue 3, 1985, Pages 191-208

>

COGNITION

Object permanence in five-month-old infants
Renée Baillargeon A*, Elizabeth S. Spelke *, Stanley Wasserman
Show more

https://doi.org/10.1016/0010-0277(85)90008-3 Get rights and content

Conv2d structures, even with RNNs, have trouble with object permanence.
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8x8 erneis transformed

images



Inturtive Physics as Underlying Goal

Experimental results with infants: object permanence
present very early, perhaps by 3 months.

/T PointCloud ' =

Liz Spelke
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/ 32x32x32
Conv3d structures are better for object

permanence, but very inefficient: hard to !

achieve high resolution. Conv(32,5,2)
14x14x14

Conv(32,3,1)+Pool(2)

6>$><6 @
§ Full(v1 28) §

Pedestrian FuII(K)/Output Toilet




Spatial convolutions are not
Ideal for physics propagation

"Derendering”
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Inturtive Physics as Underlying Goal

Experimental results with infants: object permanence
present very early, perhaps by 3 months.

Alternative to spatially-uniform priors are graph-based priors

Final CNN feature maps RN
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| | ' (Battaglia et. al., 2016)

LSTM




Inturtive Physics as Underlying Goal

Experimental results with infants: object permanence
present very early, perhaps by 3 months.

Alternative to spatially-uniform priors are graph-based priors

... still local and convolutional, just on the graph.

Final CNN feature maps RN
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| (Battaglia et. al., 2016)
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Relational Networks
(Battaglia et. al., 201 6)

Neural Physics Engine
(Chang et. al., 2016)
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Inturtive Physics as Underlying Goal

Complex Scenes Complex Materials




Describe objects through complex graphs:

Pyramid
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In fact, describe whole scenes.

Stairs Slope Half-Pipe



In fact, describe whole scenes.

Stairs Half-Pipe

scene graph
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=
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In fact, describe whole scenes.

Half-Pipe

scene graph

= nodes corresponding to particles comprising objects

= edges corresponding to relationships between particles



In fact, describe whole scenes.

Random Plane

Stairs

Half-Pipe

G = (N,E) scene oraph

N = nodes corresponding to particles comprising objects
E = edges corresponding to relationships between particles

edges are labelled by vector capturing bond characteristics



Inturtive Physics as Underlying Goal

Of course, humans don't think about all the particles at once all the time.,




Inturtive Physics as Underlying Goal
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Inturtive Physics as Underlying Goal

Of course, humans don't think about all the particles at once all the time.,

GHGH

G = dynamic “hierarchicalization” of underlying scene graph

(right now computed via k-means)

oraph convolution = hierarchical graph convolution
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Inturtive Physics as Underlying Goal

¢L2A graph conv. leaves to ancestors

¢WS graph conv. with siblings

A2D graph conv. ancestors to
¢ descendants

module composing these

n three operations from one
up-down cycle, adding
physical effects

Hierarchical graph convolution propagates interactions efficiently



Inturtive Physics as Underlying Goal

Hierarchical Relational Network (HRN):

4

| ' ¢H
G a0y

/ n _,“ /s _,Pt+]

_— >
N

... generates momentum updates (P) from hierarchical graph state (G).



Inturtive Physics as Underlying Goal

Hierarchical Relational Network (HRN):

4

| ' ¢H
G a0y

% n _,“ /s _,Pt+]

_— >
N

... generates momentum updates (P) from hierarchical graph state (G).

Network learns to interpret graph structure (including meaning of material-
vector edge labels)...



Ground Truth

Prediction

Deformable cone bouncing off a flat floor




Deformable cone bouncing off a flat floor
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Ground Truth

Prediction

Deformable box bouncing off an incline
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Ground Truth

Prediction

_Ground Truth

Prediction
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Deformable box bouncing off an incline
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Multiple rigid objects colliding




Ground truth

Prediction

rigid sphere rolling out of rigid bowl




Ground truth

Prediction

Ground truth

Prediction
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knocking over an unstable block tower
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GT the tower does fall, but prediction
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Challenges:

Ground truth

Prediction

shape is not preserved super well over long rollouts. ..
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Challenges

outs. ..
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shape is not preserved super we
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Easy to impose simple shape conversation rules — in a “per material
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... less easy to understand how to do this in material-agnostic way.



Challenges:

Extracting the graph description from video.
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ConvRNN' [ -88-8B-O- «+ Object 2
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P-8-B-O- - ovject N
Physical graph of scene
Hierarchical
Relation

twork

Scene attime T =0, I, ...t

Scene attme T = t+1,t+2, ...

Predictions of graph in future
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Human-centered feedback loop

Artificial Intelligence Algorithms

“task”

I

Experimental Testing

L = loss function D =

dataset

eg. Object
Categorization

Learning Rule

1.
A = architecture class
e CNNs
3.
dpq
dt

argmin|L(pg)]
acA

where p* is result of

backprop
=A(t) - (Vp, L(2))zeD
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