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Physics is not differentiable
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Sensitivity Analysis

— Ralph & Dempe. Directional derivatives of the solution of a parametric nonlinear
program. 1994. Research Report.

— Fiacco & Kyparisis. Sensitivity analysis in nonlinear programming under second order
assumptions. Lecture Notes in Control and Information Sciences, 74-97, 1985.

— Kyparisis. Sensitivity analysis for nonlinear programs and variational inequalities with
nonunique multipliers. Mathematics of Operations Research, 15:286298, 1990.

— Levy & Rockafellar. Sensitivity analysis of solutions to generalized equations. Trans.
Amer. Math. Soc. 1993.

— Poliquin & Rockafellar. Proto-derivative formulas for basic subgradient mappings in
mathematical programming. Set-valued Analysis, 2:275290, 1994.

— Levy & Rockafellar. Sensitivity of solutions in nonlinear programs with nonunique multiplier
Recent Adv. in Nonsmooth Optimzation: 215-223, 1995
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“We show under a standard constraint qualification, not requiring uniqueness
of the multipliers, that the quasi-solution mapping is differentiable in a
generalized sense, and we present a formula for its derivative.”

e Quasi-solution mapping: parameterized NLP P(6)
S : 0 — {z: KKT hold for P(0)}
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Non-differentiable solution maps
e Basic example (x,6 € R):
min(z — 0)*> st x>0

x

S: 60— 2" =max{0,z}
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Non-differentiable solution maps
e Basic example (x,6 € R):
min(z — 0)*> st x>0

x

S: 60— 2" =max{0,z}
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— Bifurcation depending on contact or not

(discussion with Nima Fazeli, MI{ 3



Non-differentiable solution maps

¢ Jumping contact points:

/////////
/////////

— Chaotic system
— Tiny change in initial condition (6), huge change in outcome

(How often do we see only balls or capsules in demos?)

5/23



Non-differentiable solution maps

¢ Jumping contact points:

/////////
/////////

— Chaotic system
— Tiny change in initial condition (6), huge change in outcome

(How often do we see only balls or capsules in demos?)

e “We show under a standard constraint qualification,...”
— Regularity conditions of constraints in vicinity of z*
— Typical technique for convergence proofs of NLP solvers
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Gradients don’t solve everything
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e Case 1: We used strict constraints and complementarity formulations
(gradients only hold within mode)
— Zero gradient for every object the robot is not interacting with in the
initialization
— Gradient is completely useless to help deciding about interactions
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Gradients don’t solve everything

e Assume we have a local gradient

e Case 1: We used strict constraints and complementarity formulations
(gradients only hold within mode)
— Zero gradient for every object the robot is not interacting with in the
initialization
— Gradient is completely useless to help deciding about interactions

e Case 2: We're smoothing/relaxing interactions (Todorov)
— combinatorics of local optima
— Gradient doesn’t help deciding about longer sequential interactions

o We knew that decisions about sequential interactions are NP hard
Relaxation might sometimes help, but not really to solve inherently NP
hard problems
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Combining differentiable modes with logic

time -2170

Toussaint, Allen, Smith, Tenenbaum: Differentiable Physics and Stable Modes for Tool-Use and Manipulation
Planning. R:SS’18
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0.1: 03114857 1.10575 2.07728 | 0.710069
(grasp baterR stck)

(hitSlide stickTip redBall table1)

(grasp paxterl redBal)

31. 03114302 110464 254955 | 0.611458
(grasp haxter stick)

(hitslide stickTip redBall table1)

(grasp3iide baxterl recBall tablel)

1. 0.3 1.02846 166055 2.42943 | 000344367
(grasp baxterR stick)

(push StkTIp radBal tablel)

(grasp haxterL redBall)

4. 04 0.92368 201941 349634 | 0.0585839
(grasp baxter stick)

(handaver haxterR stick haxterL)

(push StickTip redBall tablel)

(grasp baxterR redBal)

21; 04116111 115196 248215 | 00207501
(grasp baterR Sick)

(handover baxterR stick haxtarL)

(hitSlice stickTip redBall table)

(graspSlide haxterR redBall tanlel)

5:1. 0.371.14371 114327 2.7609 | 119
(grasp3lide haxterR stick table1)

(nitslice stickTip redBall table)

(grasp haxterL redBally
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e Logic-Geometric Program formulation:
control costs

goal
TalnIl‘n;lA / frath (Z(t))) dt +|fgou (x sequence of modes

= 20, (hgoa (#(T)) = 0, ggou(=(T)) <0, ‘
Vt € [0- T : [hpatn (Z(t), skt) = 0, gpatn(T(t), sx(ry) < 0,
Vk € {1, .., K} i hswiten(E(tr); ar) = 0, gswiten(T(tr), ax) < 0]
[ sk €suce(sk—1,ar) )

mode transitions
logic of mode transitions

e Multi-Bound Tree Search as basic solver:
— Every node in the LGP tree defines a skeleton (sequence of modes)

— For every skeleton we have a hierarchy of NLPs P4, .., P1,, which represent
bounds of the full path problem

— Do some kind of branch-and-bound
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This talks: focus on discussion of mode models

¢ In LGP, we do not have to describe everything using high-fidelity
physics models

o Different mode models: different simplifications/abstractions of physical
interactions

e Questions:
Which mode models are sufficient to solve which tasks?
Can the system make its own decisions on which abstractions to use to
solve a task?
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Stable Modes, Free Dynamics, Impulse Exchange

e Direct constraints on the path;
— No additional decision variables
— No representation of forces!

e (stable X Y) « relative pose of Y to X has zero velocity
(dynamic X) <> Newton-Euler acceleration law on object, so far without
any force inputs: v = g,w =0
[impulse X Y] « direct constraint change in velocities: R = mjAwv;:
mlAm + mgA’UQ =0 IlAwl —p1 X R=0
(I—ccT)Rzo IbAws +pa x R=0

e Straight-forward to make differentiable
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0:92: 0.6 0628468 0602936 0 1.02361 | 0211704
(grasp pIZR obj0)

¢

(place przR obj0 ray)

(place przL ohj] tray)
P )

592 0.6 0626442 0602993 0 1.08665 | 0417457
(grasp piZR obj0)

¢
(place przR ohjo tray)
(place przL obj1 tray)

192 0.6 0.633722 0.603255 0 1.05089 | 0197327 2:92: 0.6 0.633158 0.603161 0 1.06938 | 0.252015
(grasp prR ahj0) (grasp przR abj0)y
(grasp preL obj1) (grasp preL abj1)
(place przR ahj0 tray) (place przR b0 ray)
(grasp prR ahj2) (grasp IR abj2y
bjl tra & I7R objZ tray)

4:92; 0.6 0644428 0.603428 0110363 | 0.0894607 5:92: 0.6 0.617341 0.603234 0 1.18015 | 0.71908
(grasp preR ahj0) (grasp preR obj0)

(grasp prel. ohjt) (grasp prel. ohj1)

(place preL obj1 tray) (place preL obj1 tray)

(arasp preL abjz) (grasp preL objz)
i E obj0,ira, &

| objz tray)
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057 0.3 0.350308 0301862 0 0.469769 | 0.0812076
(grasp pre objg)

(arasp preL obj3)

{place przR obj0 tray)

357 04 0414375 0401737 0056091 | 0244107
(arasp preR obj3)

{arasp preL. obj0)

(place przR obj3 tablez)

(place przL obj0 tray)

157 0.3 0.307726 0.30273 0 0508466 | 0.21674
(grasp prz obj3)

(arasp przL. abj0)

(place przL obj0 tray)

4:57. 0.4 0409768 0401655 0 0.564126 | 0469622
(grasp prel. objo)

(arasp pr2R objd)
(place przk obj3 table2)
(place przL. abj0 tray)

257 0.3 0311509 0.302527 0 0.547901 | 0226081
(grasp preL obj3)

(qrasp prZR abjd)

(place przR obj0 tray)

557. 0.4 0403976 0401518 0 0.56905 | 0.267901
(grasp przL objty

(grasp preR abj3)

(place przR abj3 tray)

(place przL obj0 tray)
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Force-based interaction models

e (interact X Y) — introduce force decision variable f € R? into NLP

— These directly enter the Newton-Euler equations for X and Y
e Possible constraints on f:

—n'f<0 only pushing forces
I—nn")f=0 no tangential force — no friction
df =0 force complementarity with distance
f=0 force is small (small regularization)
f—f'=0 force changes continuously (small regularization)
V=0 no relative velocity (stiction & inelastic)
n'V =0 no normal velocity (inelastic)
n'V=—-3n"Vv normal vel is reflection of old vel (elasticity 3)
(I—nn")V = —nn")V’ | tangential velocity decreases exponentially

V =[v1 + w1 x (¢ — p1)] — [v2 + w2 X (¢ — p2)], with ¢ the contact point

e Complementarity formulation similar to MPCC (Posa, Cantu & Tedrake), but not for
friction cone

e Quasi-static reasoning: impose zero acceleration in all NE egs. But regularize path
length (1st-order problem)
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Fully passive scenarios (no goal, no control/actuation)

KOMO planned trajectory (corfig:8/20 5:0.5 tau:0.05) - press ENTER KOMO planned trajectory (config:9/45 &1 taw0.0280173) - press ER
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Same for goal-directed paths

6714) - press
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Friction & sliding

KOMO planned trajectory (config5/20 0.3 taui0.05) - press ENTER KOMO planned trajectory (config: 1518 0.6 tau:0.05) - press ENTE
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Challenges with this approach

e Strengths:
— Bridges between Al planning and physics, control, physical reasoning
— Can integrate various levers of abstraction for reasoning

— Important: Framework for formulating bounds to guide symbolic search

e Challenges:
— Probabilistic Formulation, Stochastic Optimal Control, Execution, ...

— Path optimization is tough for complex passive dynamics. Forward solving
is just much easier than directly fitting a full path.
(direct vs. indirect control)

— Forward models integrate NLPs for each step to define forward
dynamics—in contrast to having one big NLP over the path

— But: The LGP framework can reason and optimize over future
configurations before computing paths or forward shooting physics...
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LGP & “Effective Kinematics”

o “Effective kinematics” defines one of the bounds in tree search, that
optimizes only over single frames; here over the final configuration

T

Toussaint: Logic-geometric programming: An optimization-based approach to combined task and
motion planning. IJCAI'15 20/23




Discussion

e Physics is not differentiable
Gradients don’t solve everything
— We need more than just differentiable models

— Understand the structure of local optima and possible interaction
sequences

— Hybrid optimization, branch-and-bound, integrate logic
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Discussion

e Physics is not differentiable
Gradients don’t solve everything
— We need more than just differentiable models

— Understand the structure of local optima and possible interaction
sequences

— Hybrid optimization, branch-and-bound, integrate logic

¢ “How do we choose among different paradigms for building and
learning physical models?”
— Exploit multiple levels/abstractions of physical interactions

— stable, free, force interactions, quasi-static, complementarity

— Go beyond mini-step forward models
— Multi-scale, forward and backward, landmark-like
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Discussion

e Standard forward simulators are not the only model of physics; and
perhaps not the best for reasoning about long interaction sequences

e Scientific understanding of physical reasoning
+» More science on possible abstractions & models of physics
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Thanks

e for your attention!

e special thanks to LIS & MIT:
Leslie Pack Kaelbling, Tomas Lozano-Pérez, Russ Tedrake, Josh B
Tenenbaum, Kelsey R Allen, Kevin A Smith, llker Yildirim, Nima Fazeli

and to Toyota Research Institute

https://github.com/MarcToussaint/rai-python
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https://github.com/MarcToussaint/rai-python

