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Physics is not differentiable
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Sensitivity Analysis
– Ralph & Dempe. Directional derivatives of the solution of a parametric nonlinear

program. 1994. Research Report.
– Fiacco & Kyparisis. Sensitivity analysis in nonlinear programming under second order

assumptions. Lecture Notes in Control and Information Sciences, 74-97, 1985.
– Kyparisis. Sensitivity analysis for nonlinear programs and variational inequalities with

nonunique multipliers. Mathematics of Operations Research, 15:286298, 1990.
– Levy & Rockafellar. Sensitivity analysis of solutions to generalized equations. Trans.

Amer. Math. Soc. 1993.
– Poliquin & Rockafellar. Proto-derivative formulas for basic subgradient mappings in

mathematical programming. Set-valued Analysis, 2:275290, 1994.
– Levy & Rockafellar. Sensitivity of solutions in nonlinear programs with nonunique multiplier

Recent Adv. in Nonsmooth Optimzation: 215-223, 1995

“We show under a standard constraint qualification, not requiring uniqueness
of the multipliers, that the quasi-solution mapping is differentiable in a
generalized sense, and we present a formula for its derivative.”

• Quasi-solution mapping: parameterized NLP P(θ)

S : θ 7→ {x : KKT hold for P(θ)}
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Non-differentiable solution maps

• Basic example (x, θ ∈ R):

min
x

(x− θ)2 s.t. x ≥ 0

S : θ 7→ x∗ = max{0, x}

x∗

θ

– Discontinuous transition from stiction to sliding depending on θ

– Bifurcation depending on contact or not

(discussion with Nima Fazeli, MIT)
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Non-differentiable solution maps

• Jumping contact points:

– Chaotic system

– Tiny change in initial condition (θ), huge change in outcome

(How often do we see only balls or capsules in demos?)

• “We show under a standard constraint qualification,...”

– Regularity conditions of constraints in vicinity of x∗

– Typical technique for convergence proofs of NLP solvers
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Gradients don’t solve everything
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Gradients don’t solve everything

• Assume we have a local gradient

• Case 1: We used strict constraints and complementarity formulations
(gradients only hold within mode)
→ Zero gradient for every object the robot is not interacting with in the
initialization
→ Gradient is completely useless to help deciding about interactions

• Case 2: We’re smoothing/relaxing interactions (Todorov)
→ combinatorics of local optima
→ Gradient doesn’t help deciding about longer sequential interactions

• We knew that decisions about sequential interactions are NP hard
Relaxation might sometimes help, but not really to solve inherently NP
hard problems
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Combining differentiable modes with logic

◦

Toussaint, Allen, Smith, Tenenbaum: Differentiable Physics and Stable Modes for Tool-Use and Manipulation
Planning. R:SS’18
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◦
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• Logic-Geometric Program formulation:
control costs

goal
sequence of modes

logic of mode transitions

mode transitions

• Multi-Bound Tree Search as basic solver:

– Every node in the LGP tree defines a skeleton (sequence of modes)

– For every skeleton we have a hierarchy of NLPs P1, ..,PL, which represent
bounds of the full path problem

– Do some kind of branch-and-bound
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This talks: focus on discussion of mode models

• In LGP, we do not have to describe everything using high-fidelity
physics models

• Different mode models: different simplifications/abstractions of physical
interactions

• Questions:
Which mode models are sufficient to solve which tasks?
Can the system make its own decisions on which abstractions to use to
solve a task?
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Stable Modes, Free Dynamics, Impulse Exchange

• Direct constraints on the path;

– No additional decision variables

– No representation of forces!

• (stable X Y)↔ relative pose of Y to X has zero velocity
(dynamic X)↔ Newton-Euler acceleration law on object, so far without
any force inputs: v̇ = g, ω̇ = 0

[impulse X Y]↔ direct constraint change in velocities: R = m1∆v1:

m1∆v1 +m2∆v2 = 0 I1∆ω1 − p1 ×R = 0

(I − cc>)R = 0 I2∆ω2 + p2 ×R = 0

• Straight-forward to make differentiable
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◦
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◦

14/23



Force-based interaction models

• (interact X Y)→ introduce force decision variable f ∈ R3 into NLP

– These directly enter the Newton-Euler equations for X and Y
• Possible constraints on f :

−n>f ≤ 0 only pushing forces

(I− nn>)f = 0 no tangential force – no friction

df = 0 force complementarity with distance

f ≈ 0 force is small (small regularization)

f − f ′ ≈ 0 force changes continuously (small regularization)

V = 0 no relative velocity (stiction & inelastic)

n>V = 0 no normal velocity (inelastic)

n>V = −βn>V ′ normal vel is reflection of old vel (elasticity β)

(I− nn>)V = α(I− nn>)V ′ tangential velocity decreases exponentially
V = [v1 + w1 × (c− p1)]− [v2 + w2 × (c− p2)], with c the contact point

• Complementarity formulation similar to MPCC (Posa, Cantu & Tedrake), but not for
friction cone

• Quasi-static reasoning: impose zero acceleration in all NE eqs. But regularize path
length (1st-order problem)
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Fully passive scenarios (no goal, no control/actuation)

◦ ◦
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Same for goal-directed paths

◦ ◦
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Friction & sliding

◦ ◦ ◦
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Challenges with this approach

• Strengths:

– Bridges between AI planning and physics, control, physical reasoning

– Can integrate various levers of abstraction for reasoning

– Important: Framework for formulating bounds to guide symbolic search

• Challenges:

– Probabilistic Formulation, Stochastic Optimal Control, Execution, ...

– Path optimization is tough for complex passive dynamics. Forward solving
is just much easier than directly fitting a full path.
(direct vs. indirect control)

– Forward models integrate NLPs for each step to define forward
dynamics—in contrast to having one big NLP over the path

– But: The LGP framework can reason and optimize over future
configurations before computing paths or forward shooting physics...
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LGP & “Effective Kinematics”
• “Effective kinematics” defines one of the bounds in tree search, that

optimizes only over single frames; here over the final configuration

◦

Toussaint: Logic-geometric programming: An optimization-based approach to combined task and
motion planning. IJCAI’15 20/23



Discussion

• Physics is not differentiable
Gradients don’t solve everything
→We need more than just differentiable models

– Understand the structure of local optima and possible interaction
sequences

– Hybrid optimization, branch-and-bound, integrate logic

• “How do we choose among different paradigms for building and
learning physical models?”
→ Exploit multiple levels/abstractions of physical interactions

– stable, free, force interactions, quasi-static, complementarity

→ Go beyond mini-step forward models

– Multi-scale, forward and backward, landmark-like
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Discussion

• Standard forward simulators are not the only model of physics; and
perhaps not the best for reasoning about long interaction sequences

• Scientific understanding of physical reasoning
↔ More science on possible abstractions & models of physics
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Thanks

• for your attention!

• special thanks to LIS & MIT:

Leslie Pack Kaelbling, Tomas Lozano-Pérez, Russ Tedrake, Josh B
Tenenbaum, Kelsey R Allen, Kevin A Smith, Ilker Yildirim, Nima Fazeli

and to Toyota Research Institute

https://github.com/MarcToussaint/rai-python
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https://github.com/MarcToussaint/rai-python

