# Physics-based control

Emo Todorov

Roboti LLC University of Washington

## Physics-based control works on real systems



### Abbeel, Coates and Ng, *IJRR* 2010



#### Williams et al, *ICRA* 2016





Mordatch, Lowrey and Todorov, IROS 2015



OpenAI, 2018

randomization

## Computing physics derivatives

Analytical derivatives:

ideal, yet difficult to implement only need to be implemented once (like writing an OS)

Automatic differentiation:

good idea for smooth dynamics not a good idea with collision and constraint solvers (iterative)

Finite differences:

this is what people should do in the absence of analytical derivatives alternative: sampling + linear regression (less accurate, maybe more robust)

Learning generic differentiable models (NNs etc):

speed and generalization will not be comparable to a physics-based model if we ignore generalization, we might as well fit time-varying linear models



Kumar, Todorov and Levine, ICRA 2016

## MuJoCo physics

| q                                      | configuration       |
|----------------------------------------|---------------------|
| v                                      | velocity            |
| au                                     | applied force       |
| $c\left(q,v\right)$                    | internal force      |
| $M\left(q ight)$                       | inertia matrix      |
| $J\left(q ight)$                       | constraint Jacobian |
| $\lambda\left(q,v,\tau/\dot{v}\right)$ | constraint force    |
|                                        |                     |

Forward dynamics: convex optimization

$$\dot{v} = \arg\min_{a} \|a + M^{-1} (c - \tau)\|_{M}^{2} + s (Ja - r)$$

Inverse dynamics: analytical solution

$$\tau = M \dot{v} + c + J^T \nabla s \left( J \dot{v} - r \right), \quad \lambda = - \nabla s$$



| model       | evals / s<br>20 threads |  |
|-------------|-------------------------|--|
| humanoid    | 300,800                 |  |
| humanoid100 | 17,100                  |  |
| hammock     | 40,400                  |  |
| particle    | 7,150                   |  |
| grid2       | 19,350                  |  |
| ellipsoid   | 31,600                  |  |

#### 10-core processor

### Analytical derivatives of inverse dynamics

$$\tau \left( \boldsymbol{q}, \boldsymbol{v}, \boldsymbol{a} \right) = M \left( \boldsymbol{q} \right) \boldsymbol{a} + c \left( \boldsymbol{q}, \boldsymbol{v} \right) + J \left( \boldsymbol{q} \right)^T \nabla s \left( J \left( \boldsymbol{q} \right) \boldsymbol{a} - r \left( \boldsymbol{q}, \boldsymbol{v} \right) ; D \left( \boldsymbol{q} \right) \right)$$

exact derivative

treated as constant for now

#### CPU time, humanoid, 50 timesteps per core

| cost | only:           | 1.5  | ms |
|------|-----------------|------|----|
| cost | + analytical:   | 7.5  | ms |
| cost | + one-sided FD: | 48.0 | ms |

#### Derivatives of forward dynamics

inverse  $au\left(q,v,a
ight)$ forward  $a\left(q,v, au
ight)$ 

$$\frac{\partial a}{\partial \tau} = \left(\frac{\partial \tau}{\partial a}\right)^{-1}$$
$$\frac{\partial a}{\partial v} = -\left(\frac{\partial \tau}{\partial a}\right)^{-1}\frac{\partial \tau}{\partial v}$$
$$\frac{\partial a}{\partial q} = -\left(\frac{\partial \tau}{\partial a}\right)^{-1}\frac{\partial \tau}{\partial q}$$

### **GDD:** Goal Directed Dynamics

Force partitioning:  $\tau = (u, z)$ Forward dynamics:  $\dot{v} = f(q, v, \tau)$ Inverse dynamics:  $\tau = g(q, v, \dot{v}) = (g_u, g_z)$ Feasible acceleration set:  $\mathcal{A}(q, v) = \{a \in \mathcal{R}^n : g_u(q, v, a) \in \mathcal{U}, g_z(q, v, a) = 0\}$ 

GDD: find a feasible acceleration that minimizes a given cost

 $\dot{v} = \arg\min_{a \in \mathcal{A}(q,v)} \|g(q,v,a)\|_{R} + \ell(a)$ 

Non-convex non-smooth constrained optimization problem. Primal-dual method with exact line search specific to MuJoCo. Use analytical derivative with respect to acceleration.

With N contacts and pyramidal friction cones, we have 4<sup>N</sup> smooth pieces. GDD optimizes over all pieces, instead of assuming a fixed piece (like QP methods). Todorov, ICRA 2018

### GDD simulation results



Cost with three terms:

- virtual damping on all joints
- virtual spring-damper between selected body and user-controlled spatial target
- optional desired pose for grasping

| <b>CPU time per step</b> $(\mu s)$ | humanoid | hand |
|------------------------------------|----------|------|
| forward                            | 49       | 128  |
| goal-directed                      | 90       | 182  |
| goal-directed + forward            | 99       | 194  |

### AILQR: Acceleration-based Iterative LQR

Discrete-time integration

 $q_{t+h} = q_t + hv_t$  $v_{t+h} = v_t + ha_t$ 

Running cost

$$\|g(q,v,a)\|_R + p(q,v)$$

Bellman equation

$$V^{*}(q,v) = p(q,v) + \min_{a \in \mathcal{A}(q,v)} \|g(q,v,a)\|_{R} + V^{*}(q+hv,v+ha)$$

The minimization step in the Bellman equation is equivalent to GDD with

$$\ell(a) = V^*(q + hv, v + ha)$$

Apply iLQR to this problem formulation, with GDD at each step. Use position and velocity derivatives to propagate V\* through time.

## Online trajectory optimization (MPC)



We have been able to apply MPC to the full-body dynamics thanks to:

- efficient physics simulation (MuJoCo);
- efficient optimization algorithm (iLQG);
- carefully designed cost functions.



Tassa, Erez and Todorov, *IROS* 2012 Erez et al, *Humanoids* 2013 Tassa et al; Kumar et al; Erez et al; *ICRA* 2014

FDPG: Fully Deterministic Policy Gradient

**Performance:** 

$$L(\theta) = \sum_{t} \ell(x_t, u_t) \quad \text{where } x_{t+1} = f(x_t, u_t), u_t = \pi(x_t, \theta)$$

**Policy gradient:** 

 $\frac{\partial L}{\partial \theta} = \sum_{t} \left( \frac{\partial \ell}{\partial x_{t}} + \frac{\partial \ell}{\partial u_{t}} \frac{\partial \pi}{\partial x_{t}} \right) \frac{\partial x_{t}}{\partial \theta} + \frac{\partial \ell}{\partial u_{t}} \frac{\partial \pi}{\partial \theta}$  $\frac{\partial x_{t+1}}{\partial \theta} = \left( \frac{\partial f}{\partial x_{t}} + \frac{\partial f}{\partial u_{t}} \frac{\partial \pi}{\partial x_{t}} \right) \frac{\partial x_{t}}{\partial \theta} + \frac{\partial f}{\partial u_{t}} \frac{\partial \pi}{\partial \theta}$ 

Initialization:

propagation:

Forward

There is also a backward propagation algorithm for the gradient of the cost-to-go function.

 $\frac{\partial x_0}{\partial \theta} = 0$ 

It is called Pontryagin's Maximum Principle, derived 30 years before backpropagation for NNs.



## RNN control of human arm model

Huh and Todorov, ADPRL 2009





Unfold network and arm dynamics in time

Compute analytical deterministic policy gradient (backpropagation-through-time)

Optimize weights with nonlinear conjugate gradient

the method was so fast and obvious that we called it optimization instead of learning

#### **OBSERVATION:**

the same network could learn multiple tasks, but at some point it seemed to hit a wall and there was no way to add more tasks

### POLO: Plan Online, Learn Offline

Infinite-horizon average-cost Bellman equation:

$$c + v(x) = \min_{u} \{\ell(x, u) + v(f(x, u))\}$$

Equivalent constrained optimization problem:

$$\min_{c,v(\cdot)} \{c\} \quad \text{s.t.} \quad (\text{Bellman})$$
$$\min_{c,v(\cdot)} \left\{\min_{u} \left\{\ell\left(x,u\right) + v\left(f\left(x,u\right)\right)\right\} - v\left(x\right)\right\} \quad \text{s.t.} \quad (\text{Bellman})$$

Replace the value function v(x) with an approximation  $v(x, \theta)$ . Unfold the dynamics for T steps:  $x_{t+1} = f(x_t, u_t)$ . Replace the hard constraint with a soft penalty:

$$\min_{c,\theta,\{u_t\}} \left( \sum_t \ell(x_t, u_t) + v(x_T, \theta) - v(x_0, \theta) \right) + \rho \sum_t \left( \ell(x_t, u_t) + v(x_{t+1}, \theta) - v(x_t, \theta) - c \right)^2$$

MPC:  $\min_{\{u_t\}} \sum_t \ell(x_t, u_t) + v(x_T, \theta)$  Learning:  $\min_{c, \theta} \sum_t (\ell(x_t, u_t) + v(x_{t+1}, \theta) - v(x_t, \theta) - c)^2$ 

Lowrey, Rajeswaran, Kakade, Todorov and Mordatch, arXiv 2018



10-100x less samples than policy gradient

## Making computational tools accessible



BLAS, NAG, LAPACK

OpenAI Gym DM Control Suite (more coming)

MuJoCo

**Optico** SDK: costs, derivatives, optimizers

**Optico** User: dynamic workspace, scripting, GUI

