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Analytical derivatives:
ideal, yet difficult to implement
only need to be implemented once (like writing an OS)

Automatic differentiation:
good idea for smooth dynamics
not a good idea with collision and constraint solvers (iterative)

Finite differences:
this is what people should do in the absence of analytical derivatives
alternative: sampling + linear regression (less accurate, maybe more robust)

Learning generic differentiable models (NNs etc):
speed and generalization will not be comparable to a physics-based model
if we ignore generalization, we might as well fit time-varying linear models

Kumar, Todorov and Levine, ICRA 2016



MuJoCo physics

q configuration
v velocity
T applied force
¢ (q,v) internal force
M (q) inertia matrix
J (q) constraint Jacobian
model evals/s
A(q,v,7/v) constraint force 20 threads

humanoid 300,800

Forward dynamics: convex optimization humanoid100 || 17,100

hammock 40,400

v :argmin”a—l—Z\/[_1 (C—T)H?V[—I—S(Ja—?”)

particle 7,150
grid2 19,350
Inverse dynamics: analytical solution ellipsoid 31.600

T=Mo+c+J'Vs(Jo—7r), A= —-Vs
10-COre Processor
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exact derivative treated as constant for now
CPU time, humanoid, 50 timesteps per core Derivatives of forward dynamics
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cost + analytical: 7.5 ms Hverse T(QVUJQ ?E _ ?I
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Force partitioning: 7 = (u, 2) Todorov. ICRA 2018

Forward dynamics: o= f(q,v,7)
Inverse dynamics: T=9(q,v,9) = (Gu, g-)

Feasible acceleration set: A(q,v) ={a € R" : gu(q.v,a) €U, g.(q,v,a) =0}

GDD: find a feasible acceleration that minimizes a given cost

b =arg min lg (g.v,a)l|g + € (a)

Non-convex non-smooth constrained optimization problem.
Primal-dual method with exact line search specific to MuJoCo.
Use analytical derivative with respect to acceleration.

With N contacts and pyramidal friction cones, we have 4N smooth pieces.
GDD optimizes over all pieces, instead of assuming a fixed piece (like QP methods).



GDD simulation results

Cost with three terms:
- virtual damping on all joints

- virtual spring-damper between selected
body and user-controlled spatial target

- optional desired pose for grasping

CPU time per step (+s) humanoid hand
forward 49 128
goal-directed 90 182
goal-directed + forward 99 194




Discrete-time integration

Gi+h = q¢ + hvy
Vivn = U + hay

Running cost

”g(Q: v, 1{I)HR + p(qa U)

Bellman equation

V*(q,v) =p(g,v) + aeril%?v) g (q,v,a)|z+V*(q+ hv,v+ ha)

The minimization step in the Bellman equation is equivalent to GDD with

l(a) =V*(q+ hv,v+ ha)

Apply iLQR to this problem formulation, with GDD at each step.
Use position and velocity derivatives to propagate V* through time.



Online trajectory optimization (MPC)

At each time step, do trajectory optimization
with warm-start from the previous time step:

R

We have been able to apply MPC to the full-body dynamics thanks to:

- efficient physics simulation (MuJoCo);
- efficient optimization algorithm (iLQG);
- carefully designed cost functions.

Tassa, Erez and Todorov, IROS 2012
Erez et al, Humanoids 2013
Tassa et al; Kumar et al; Erez et al; ICRA 2014




FDPG: Fully Deterministic Policy Gradient

Performance: L) = ). t(z,u) where xyyy = [ (24, up),up = 7 (24, 0)
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There is also a backward propagation algorithm
for the gradient of the cost-to-go function.

It is called Pontryagin’s Maximum Principle, .
derived 30 years before backpropagation for NNs. dynamics
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policies trajectories



Huh and Todorov, ADPRL 2009
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Unfold network and arm dynamics in time

Compute analytical deterministic policy gradient
(backpropagation-through-time)

. . , , , . OBSERVATION:
Optimize weights with nonlinear conjugate gradient the same network could learn multiple tasks,
. . but at some point it seemed to hit a wall and
the method was so fast and obvious that we called it there was no way to add more tasks

optimization instead of learning



POLO: Plan Online, Learn Offline

Infinite-horizon average-cost Bellman equation: Lowrey, Rajeswaran, Kakade,
Todorov and Mordatch, arXiv 2018

c+v(x)=min{l(z,u) +v(f (x,u))}
u
Equivalent constrained optimization problem:

min {c¢} s.t. (Bellman)

C,“U(')
mi(n) {min W (zx,u)+v(f(x,u)}—wv (:L‘)} s.t.  (Bellman)

10-100x less samples
than policy gradient

Replace the value function v (z) with an approximation v (z, 6).
Unfold the dynamics for T" steps: @1 = f (¢, uy).
Replace the hard constraint with a soft penalty:

IHH{iIl ! (Ztﬁ (33?57 ut) T (xTv 9) —v (560,9)) + pZt (E (33?57 ut) T (:Et—I-lv 9) — v (xta 9) _ 6)2

MPC: mir; Yol (xy,u) +v(xr,0) Learning: mign o (U (e, ur) + v (Tg1,0) —v (24, 0) — ¢)?
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BLAS, NAG, LAPACK

PC-MATLAB

1985

124 Foxwood Rd., Portola Valley, CA94025 415-851-1162

Making computational tools accessible

MuJoCo Optico SDK:

OpenAl Gym
DM Control Suite
(more coming)

Optico User:

[l Optico Studio
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