Physics-based control

Emo Todorov
Roboti LLC
University of Washington
Physics-based control works on real systems

Abbeel, Coates and Ng, *IJRR* 2010

Williams et al, *ICRA* 2016

Mordatch, Lowrey and Todorov, *IROS* 2015

OpenAI, 2018
Computing physics derivatives

Analytical derivatives:
 ideal, yet difficult to implement
 only need to be implemented once (like writing an OS)

Automatic differentiation:
 good idea for smooth dynamics
 not a good idea with collision and constraint solvers (iterative)

Finite differences:
 this is what people should do in the absence of analytical derivatives
 alternative: sampling + linear regression (less accurate, maybe more robust)

Learning generic differentiable models (NNs etc):
 speed and generalization will not be comparable to a physics-based model
 if we ignore generalization, we might as well fit time-varying linear models

Kumar, Todorov and Levine, *ICRA* 2016

MuJoCo physics

\[q \] configuration
\[v \] velocity
\[\tau \] applied force
\[c(q,v) \] internal force
\[M(q) \] inertia matrix
\[J(q) \] constraint Jacobian
\[\lambda(q,v,\tau/\dot{v}) \] constraint force

Forward dynamics: convex optimization

\[
\dot{v} = \arg \min_a \left\| a + M^{-1} (c - \tau) \right\|_M^2 + s \left(Ja - r \right)
\]

Inverse dynamics: analytical solution

\[
\tau = M\dot{v} + c + J^T \nabla_s (J\dot{v} - r), \quad \lambda = -\nabla s
\]

<table>
<thead>
<tr>
<th>model</th>
<th>evals / s 20 threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>humanoid</td>
<td>300,800</td>
</tr>
<tr>
<td>humanoid100</td>
<td>17,100</td>
</tr>
<tr>
<td>hammock</td>
<td>40,400</td>
</tr>
<tr>
<td>particle</td>
<td>7,150</td>
</tr>
<tr>
<td>grid2</td>
<td>19,350</td>
</tr>
<tr>
<td>ellipsoid</td>
<td>31,600</td>
</tr>
</tbody>
</table>

10-core processor
Analytical derivatives of inverse dynamics

$$\tau(q, v, a) = M(q)a + c(q, v) + J(q)^T \nabla_s (J(q)a - r(q, v); D(q))$$

- exact derivative
- treated as constant for now

CPU time, humanoid, 50 timesteps per core

<table>
<thead>
<tr>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost only</td>
<td>1.5 ms</td>
</tr>
<tr>
<td>cost + analytical</td>
<td>7.5 ms</td>
</tr>
<tr>
<td>cost + one-sided FD</td>
<td>48.0 ms</td>
</tr>
</tbody>
</table>

Derivatives of forward dynamics

\[
\begin{align*}
\frac{\partial a}{\partial \tau} &= \left(\frac{\partial \tau}{\partial a}\right)^{-1} \\
\frac{\partial a}{\partial v} &= -\left(\frac{\partial \tau}{\partial a}\right)^{-1} \frac{\partial \tau}{\partial v} \\
\frac{\partial a}{\partial q} &= -\left(\frac{\partial \tau}{\partial a}\right)^{-1} \frac{\partial \tau}{\partial q}
\end{align*}
\]
GDD: Goal Directed Dynamics

Force partitioning: \(\tau = (u, z) \)
Forward dynamics: \(\dot{v} = f(q, v, \tau) \)
Inverse dynamics: \(\tau = g(q, v, \dot{v}) = (g_u, g_z) \)
Feasible acceleration set: \(\mathcal{A}(q, v) = \{ a \in \mathbb{R}^n : g_u(q, v, a) \in \mathcal{U}, g_z(q, v, a) = 0 \} \)

GDD: find a feasible acceleration that minimizes a given cost

\[
\dot{v} = \arg \min_{a \in \mathcal{A}(q, v)} \| g(q, v, a) \|_R + \ell(a)
\]

Non-convex non-smooth constrained optimization problem.
Primal-dual method with exact line search specific to MuJoCo.
Use analytical derivative with respect to acceleration.

With N contacts and pyramidal friction cones, we have \(4^N \) smooth pieces.
GDD optimizes over all pieces, instead of assuming a fixed piece (like QP methods).
GDD simulation results

Cost with three terms:

- virtual damping on all joints
- virtual spring-damper between selected body and user-controlled spatial target
- optional desired pose for grasping

<table>
<thead>
<tr>
<th>CPU time per step (μs)</th>
<th>humanoid</th>
<th>hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>forward</td>
<td>49</td>
<td>128</td>
</tr>
<tr>
<td>goal-directed</td>
<td>90</td>
<td>182</td>
</tr>
<tr>
<td>goal-directed + forward</td>
<td>99</td>
<td>194</td>
</tr>
</tbody>
</table>
AILQR: Acceleration-based Iterative LQR

Discrete-time integration

\[q_{t+h} = q_t + hv_t \]
\[v_{t+h} = v_t + ha_t \]

Running cost

\[\|g(q, v, a)\|_R + p(q, v) \]

Bellman equation

\[V^*(q, v) = p(q, v) + \min_{a \in \mathcal{A}(q, v)} \|g(q, v, a)\|_R + V^*(q + hv, v + ha) \]

The minimization step in the Bellman equation is equivalent to GDD with

\[\ell(a) = V^*(q + hv, v + ha) \]

Apply iLQR to this problem formulation, with GDD at each step. Use position and velocity derivatives to propagate \(V^* \) through time.
Online trajectory optimization (MPC)

At each time step, do trajectory optimization with warm-start from the previous time step:

We have been able to apply MPC to the full-body dynamics thanks to:

- efficient physics simulation (MuJoCo);
- efficient optimization algorithm (iLQG);
- carefully designed cost functions.

Tassa, Erez and Todorov, *IROS* 2012
Erez et al, *Humanoids* 2013
Tassa et al; Kumar et al; Erez et al; *ICRA* 2014
FDPG: Fully Deterministic Policy Gradient

Performance:

\[L(\theta) = \sum_t \ell(x_t, u_t) \quad \text{where} \quad x_{t+1} = f(x_t, u_t), \ u_t = \pi(x_t, \theta) \]

Policy gradient:

\[
\frac{\partial L}{\partial \theta} = \sum_t \left(\frac{\partial \ell}{\partial x_t} + \frac{\partial \ell}{\partial u_t} \frac{\partial \pi}{\partial x_t} \right) \frac{\partial x_t}{\partial \theta} + \frac{\partial \ell}{\partial u_t} \frac{\partial \pi}{\partial \theta}
\]

Forward propagation:

\[
\frac{\partial x_{t+1}}{\partial \theta} = \left(\frac{\partial f}{\partial x_t} + \frac{\partial f}{\partial u_t} \frac{\partial \pi}{\partial x_t} \right) \frac{\partial x_t}{\partial \theta} + \frac{\partial f}{\partial u_t} \frac{\partial \pi}{\partial \theta}
\]

Initialization:

\[
\frac{\partial x_0}{\partial \theta} = 0
\]

There is also a backward propagation algorithm for the gradient of the cost-to-go function.

It is called Pontryagin's Maximum Principle, derived 30 years before backpropagation for NNs.
RNN control of human arm model

Huh and Todorov, *ADPRL* 2009

Unfold network and arm dynamics in time

Compute analytical deterministic policy gradient
(backpropagation-through-time)

Optimize weights with nonlinear conjugate gradient

the method was so fast and obvious that we called it optimization instead of learning

OBSERVATION:
the same network could learn multiple tasks, but at some point it seemed to hit a wall and there was no way to add more tasks
Infinite-horizon average-cost Bellman equation:
\[
c + v(x) = \min_u \{ \ell(x,u) + v(f(x,u)) \}
\]

Equivalent constrained optimization problem:
\[
\min_{c,v(\cdot)} \{ c \} \quad \text{s.t. (Bellman)}
\]
\[
\min_{c,v(\cdot)} \left\{ \min_u \{ \ell(x,u) + v(f(x,u)) \} - v(x) \right\} \quad \text{s.t. (Bellman)}
\]

Replace the value function \(v(x)\) with an approximation \(v(x, \theta)\).
Unfold the dynamics for \(T\) steps: \(x_{t+1} = f(x_t, u_t)\).
Replace the hard constraint with a soft penalty:
\[
\min_{c,\theta,\{u_t\}} (\sum_t \ell(x_t, u_t) + v(x_T, \theta) - v(x_0, \theta)) + \rho \sum_t (\ell(x_t, u_t) + v(x_{t+1}, \theta) - v(x_t, \theta) - c)^2
\]

\textbf{MPC: } \(\min_{\{u_t\}} \sum_t \ell(x_t, u_t) + v(x_T, \theta) \) \hspace{1cm} \textbf{Learning: } \(\min_{c,\theta} \sum_t (\ell(x_t, u_t) + v(x_{t+1}, \theta) - v(x_t, \theta) - c)^2 \)
Making computational tools accessible

BLAS, NAG, LAPACK

MuJoCo

OpenAI Gym

DM Control Suite

(more coming)

Optico SDK: costs, derivatives, optimizers

Optico User: dynamic workspace, scripting, GUI