Learning models of very large hybrid domains that are good for planning

Leslie Pack Kaelbling
Zi Wang, Victoria Xia
George Konidaris, Tomas Lozano-Perez
Hanna Pasula, Luke Zettlemoyer
Many models of the physical world

All wrong, some useful.

Useful for what?
My focus: Models that are useful for robot action selection

1 What To do First?
Konidaris's tale of two levels

crisp
- potentially highly inaccurate
- sparse
- easier to learn model
- easier to compute with

swampy: (PDEs)
- potentially very very accurate
- hard to know state
- hard to learn model
- hard to compute with
We need both levels!

crisp: transition model
- abstract over objects
- matched to planning algs
- nearly deterministic

swampy: local control loops
- learn policy directly or do local MPC
- control out stochasticity and
 (some) partial observability

Carve nature at its joints!
How to get started?

Policies first (Konidaris)
- start with swampy option policies
- learn purely discrete factored transition model

Properties first (lpk)
- start with idea of objects, defined properties
- learn policies to change property values
- learn hybrid model of preconds and effects for planning
Planning in large hybrid (discrete + continuous) domains

Pure forward search unlikely to work
- infinite branching factor
- unbiased sampling unlikely to satisfy downstream requirements

Modern TAMP (task and motion planning) strategies integrate structure and parameter search
- constrained optimization (Toussaint)
- pre-image back-chaining (Kaelbling and Lozano-Perez)
- sampling guided by task-level plans (Garrett)

Represent constraints among discrete and continuous values
How can a **competent** robot acquire a new ability?

- Learn new primitive skill
 - Examples: Cutting, pushing, stirring, pouring, throwing
 - Closed-loop low-level policy intended to achieve some objective, possibly parameterized

- Add that skill to existing skill set to accomplish new goals!
 - For flexibility, use a general-purpose planner
 - Learn description of skill's preconditions and effects
 - Representation should generalize over objects, locations, etc.

Most robot learning: assume given

Our focus
Learning a new operator

1. Determine which other objects may affect or be affected by this policy
 • Old approach (Pasula, Zettlemoyer, K)
 • Preliminary new approach (Xia, Wang, K)

2. Learn detailed relation on properties of all these objects that predicts when the policy will have its intended effect
 • Gaussian process method also supports planning (Wang, Garrett, K, Lozano-Perez)
Learning a new operator

1. Determine which other objects may affect or be affected by this policy
 • Old approach (Pasula, Zettlemoyer, K)
 • Preliminary new approach (Xia, Wang, K)

2. Learn detailed relation on properties of all these objects that predicts when the policy will have its intended effect
 • Gaussian process method also supports planning (Wang, Garrett, K, Lozano-Perez)
Blocks with (wonky) physics

Pasula, Zettlemoyer, K; JAIR 2007
Probabilistic dynamic rules

Combine logic and probability to model effects of actions in complex, uncertain domains.

- **pickup(X):** \{Y: on(X,Y)\}
 - clear(X), inhand-nil, size(X)>2, size(X)<7 \(\rightarrow\) 0.803 \(\neg\) on(X,Y)
 - 0.093: no change

- **deictic reference:** Y = the object X is on
- **SPRIPS assumption:** no other relations change
- **sparse:** few dependencies
- **noise outcome:** probs don't sum to 1
For now, assume some definition of "On"

Useful symbolic vocabulary should be learned
Neoclassical learning

Given experience, \(\{(s_t, a_t, s_{t+1})\} \)

Find rule set that optimizes

\[
\text{score}(R) = \sum_t \log \Pr(s_{t+1} \mid s_t, a_t, R) - \alpha |R|
\]

Start with one default rule: “stuff happens”

- **Symbolic**: add, delete rule; change rule conditions
- **Greedy**: choose set of outcomes
- **Convex optimization**: find maximum likelihood probabilities
Concept invention

- New concepts allow predictive theory to be expressed more compactly and learned from less data
- Add outer loop with logical operations, quantification, transitive closure, counting
- Definitions subject to complexity penalty

\[
p1(X) : - \exists Y. \text{on}(X,Y) \quad \text{X is in the hand}
\]
\[
p2() : - \exists Z. \text{p1}(Z) \quad \text{nothing is in the hand}
\]
\[
p3(X) : - \exists Y. \text{on}(Y,X) \quad \text{X is clear}
\]
\[
p4(X,Y) : - \text{on}(X,Y) \quad \text{X is above Y}
\]
\[
p5(X,Y) : - \text{p3}(X) \land \text{p4}(X,Y) \quad \text{X is on the top of the stack containing Y}
\]
\[
f6(X) : - \#Y. \text{p4}(X,Y) \quad \text{the height of X}
\]
Rules learned from data

pickup(X): \{Y: on(X,Y)\}
clear(X), inhand-nil, size(X)>2, size(X)<7 \rightarrow
0.803 :\neg on(X,Y)
0.093 : no change
Rules learned from data

pickup(\(X\)):
clear(\(X\)), inhand-nil, \neg size(\(X\))<7 \rightarrow
0.906 : no change

it's impossible to pick up very big blocks
Rules learned from data

\[
\text{pickup}(X): \{T: \text{table}(T)\}, \{Y: \text{on}(X,Y), \text{on}(Y,T)\},
\text{clear}(X), \text{inhand-nil}, \text{size}(X)<2 \Rightarrow
\begin{align*}
0.105 & : \neg \text{on}(X,Y) \\
0.582 & : \neg \text{on}(Y,T) \\
0.312 & : \text{no change}
\end{align*}
\]

if a tiny block is on another block that is on the table, and we try to pick up the tiny block, we’ll often pick up the other block as well, or fail
Planning with learned rules

![Graph showing the relationship between the number of training examples and total reward. The graph includes lines for 'learned concepts', 'no noise outcome', 'no concepts', and 'human performance'. The y-axis represents the total reward, which increases as the number of training examples increases. The x-axis represents the number of training examples, ranging from 250 to 1000. The 'learned concepts' line shows a significant increase in total reward as more training examples are provided, indicating the effectiveness of learning rules in planning.]

- **Learned concepts**: Shows a steep increase in total reward as the number of training examples increases, indicating the advantage of using learned rules.
- **No noise outcome**: Stays relatively constant, suggesting that the absence of noise does not significantly impact the total reward.
- **No concepts**: Shows a moderate increase, indicating the baseline performance without any specific learned rules.
- **Human performance**: Remains constant, demonstrating the performance of human algorithms.

The graph highlights the effectiveness of planning with learned rules, particularly in terms of total reward as the number of training examples grows.
Learning a new operator

1. Determine which other objects may affect or be affected by this policy
 - Old approach (Pasula, Zettlemoyer, K)
 - Preliminary new approach (Xia, Wang, K)

2. Learn detailed relation on properties of all these objects that predicts when the policy will have its intended effect
 - Gaussian process method also supports planning (Wang, Garrett, K, Lozano-Perez)
Operator descriptions: sparse relational transition model

Planning is efficient given representation that is
- factored, relational
- generalized over objects
- sparse and local

Operator descriptions represent transition model

Related models
- neural module networks
- graph networks
- attention models

\[
\text{Op}(A, B) : p_2(A) = v, p_4(B) = w, r_3(A, B) = c \rightarrow p_2(A) = d
\]

Xia, Wang, K; arXiv, 2018
Deictic references name related objects

Rules automatically condition on and predict objects named in action: Push(Obj)

Refer to additional objects via deictic references:
- examples: above, below, near, nearest
- return an object or a set
- can be applied to an object that has already been "recruited"

Push(O1)
- O2 = Above(O1)
- O3 = Above(O2)
- O4 = Below(O1)
Deictic references name related objects

Rules automatically condition on and predict objects named in action: Push(Obj)

Refer to additional objects via **deictic references**:
- examples: above, below, near, nearest
- return an object or a set
- can be applied to an object that has already been "recruited"

Push(O1)
- O2 = Above(O1)
- O3 = Above(O2)
- O4 = Below(O1)
Deictic rule

• motor primitive: Push(Obj, params)
• deictic references: select other objects: Obj2 = Above(Obj), ...
• neural network: predicts distribution on new property values for objects based on old property values
 • fixed length input and output
 • mechanism for handling sets
Rule learning: training data is \((s, a, s')\)

Outer loop over set of rules
- Greedily add best next deictic reference to generate new rule

Inner loop
- EM-method for deciding which rule(s) account for which training examples
- Predict mean and variance for each property
- Gradient descent on NN that predicts next values, minimize conditional log likelihood
Preliminary results: pushing objects on crowded table

Compare likelihood on held-out data
 • Learned rule-based model
 • Neural network trained on vector of attributes of all objects
 • Pushed object always first
 • Other objects sorted by distance from first
Sparse rules learn with less data (3 objects in all scenes)
Sparse rules unaffected by clutter

Very recent results with graphNN
- better predictive likelihood
- not sparse for planning

Allen, Silver, now
Learning a new operator

1. Determine which other objects may affect or be affected by this policy
 • Old approach (Pasula, Zettlemoyer, K)
 • Preliminary new approach (Xia, Wang, K)

2. Learn detailed relation on properties of all these objects that predicts when the policy will have its intended effect
 • Gaussian process method also supports planning (Wang, Garrett, K, Lozano-Perez)
Operator description for planning: when will skill achieve result?

Result: Contains(Dest, Liquid)
Skill: Pour(Gain)

Preimage:
- Contains(Source, Liquid)
- Holding(Source, Grasp)
- Shape(Source) = (Swidth, Sheight)
- Shape(Dest) = (Dwidth, Dheight)
- RelPose(Source, Dest) = (Rx, Ry)
- Constraint(Sw, Sh, Dw, Dh, Rx, Ry, Grasp, Gain)

Wang, Garrett, K, Lozano-Perez; IROS 2018
Preliminary results on robot (learning constraint only)

Substantial variability in
- starting arrangement
- goal

Given pick/place operators

Learned pour and push
Lots to do

• Quantify "epistemic" uncertainty in learned models

• Combine with active learning approach

• Extend to partial observability

Infer2Control Workshop
Saturday 3:30 PM

RL in POMDP Workshop
Saturday 9:05 AM
Thanks. And out-takes to watch during questions