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Many models of the physical world

All wrong, some useful.

Useful for what?
1 i (new)
i+1

| (old)
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My focus: Models that are useful for robot action selection

WTF?

1 What To do First?
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Konidaris's tale of two levels

crisp

- potentially highly inaccurate
- sparse

- easier to learn model

- easier to compute with

swampy: (PDEs)

- potentially very accurate
- hard to know state

- hard to learn model

- hard to compute with




We need both levels!

crisp: transition model

- abstract over objects

- matched to planning algs
- nearly deterministic

Carve nature at its joints!

swampy: local control loops
- learn policy directly or do local MPC
- control out stochasticity and

(some) partial observability




How to get started?

Policies first (Konidaris)

- start with swampy option policies

- learn purely discrete factored transition
model

Properties first (Ipk)

- start with idea of objects, defined properties

- learn policies to change property values

- learn hybrid model of preconds and effects
for planning




Planning in large hybrid (discrete + continuous) domains

Pure forward search unlikely to work

* infinite branching factor

* unbiased sampling unlikely to satisfy downstream
requirements

Represent constraints among
discrete and continuous values

Modern TAMP (task and motion planning) strategies
integrate structure and parameter search

e constrained optimization
(Toussaint)

* pre-image back-chaining
(Kaelbling and Lozano-Perez)

* sampling guided by task-level plans
(Garrett)




How can a competent robot acquire a new ability?

e Learn new primitive skill :
, , . , Most robot learning:
 Examples: Cutting, pushing, stirring, pouring, Jcsume given
throwing 5

* Closed-loop low-level policy intended to achieve some
objective, possibly parameterized

* Add that skill to existing skill set to accomplish new goals!

* For flexibility, use a general-purpose planner
e Learn description of skill's preconditions and effects
* Representation should generalize over objects, locations, etc.

Our focus



Learning a new operator

1. Determine which other objects may affect or be affected by this policy
 Old approach (Pasula, Zettlemoyer, K)
 Preliminary new approach (Xia, Wang, K)

2. Learn detailed relation on properties of all these objects that predicts
when the policy will have its intended effect

 Gaussian process method also supports planning
(Wang, Garrett, K, Lozano-Perez)
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Blocks with
(wonky) physics

Pasula, Zettlemoyer, K; JAIR 2007



Probabilistic dynamic rules

Combine logic and probability to
model effects of actions in complex, uncertain domains
deictic reference:
Y = the object X is on

pickup(X): {Y: on(X,Y)}
clear(X), inhand-nil, size(X)>2, size(X)<7 =
0.803 :-on(X,Y)
0.093 : no change

STRIPS assumption:
no other relations change

sparse: noise outcome:
few dependencies probs don't sumto 1



For now, assume some definition of "On"

Useful symbolic vocabulary should be learned




Neoclassical learning

Given experience, {(st,aq,8¢41))

Find rule set that optimizes

score(R) = ) _logPr(se+1 | st,a¢,R) — alR]
t

Start with one default rule: “stuff happens”
* Symbolic: add, delete rule; change rule conditions
* Greedy: choose set of outcomes
e Convex optimization: find maximum likelihood probabilities



Concept invention

* New concepts allow predictive theory to be expressed more compactly and
learned from less data

* Add outer loop with logical operations, quantification, transitive closure, counting

e Definitions subject to complexity penalty

pl(X) :- =3Y. on(X,Y) X is in the hand
p2() :- =3Z. pl(Z) nothing is in the hand
p3(X) :- =3Y. on(Y,X) X is clear

p4(X,Y) :- on(X,Y)" X is above Y

p5(X,Y) :- p3(X) A p4(X,Y) X is on the top of the stack containing Y
fo(X) :- #Y. p4(X,Y) the height of X



Rules learned from data

pickup(X): {Y: on(X,Y)}
clear(X), inhand-nil, size(X)>2, size(X)<7->
0.803 :-on(X,Y)
0.093 : no change

picking up middle-
sized blocks usually




Rules learned from data

pickup(X):
clear(X), inhand-nil, -size(X)<7 -
0.900 :

no change

it’s impossible to
pick up very big

blocks




Rules learned from data

pickup(X): {T: table(T)}, {Y: on(X,Y), on(Y,T)}
clear(X), inhand-nil, size(X)<Z2 =
0.105 :-on(X,Y)
0.582 :-on(Y,T)
0.312 : no change

if a tiny block is on
another block that is on
the table, and we try to
pick up the tiny block,

we’ll often pick up the
other block as well, or
fail




Planning with learned rules

Total Reward
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Learning a new operator

1. Determine which other objects may affect or be affected by this policy
 Old approach (Pasula, Zettlemoyer, K)
* Preliminary new approach (Xia, Wang, K)

2. Learn detailed relation on properties of all these objects that predicts
when the policy will have its intended effect

 Gaussian process method also supports planning
(Wang, Garrett, K, Lozano-Perez)



Operator descriptions: sparse relational transition model

Planning is efficient given representation that is

e factored, relational

* generalized over objects

* sparse and local
Operator descriptions represent
transition model
Related models

* neural module networks

01
* graph networks
e attention models
objects
On,

Xia, Wang, K; arXiv, 2018
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Deictic references name related objects

Rules automatically condition on and predict objects named in action: Push(Obj)

Refer to additional objects via deictic references:
* examples: above, below, near, nearest
* return an object or a set
* can be applied to an object that has already
been "recruited”
Push(O1)
02 = Above(01)
03 = Above(02)
e 04 = Below(0O1)
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Deictic rule

e motor primitive: Push(Obj, params)
* deictic references: select other objects: - = Above(Obj), ...

* neural network: predicts distribution on new property values for objects
based on old property values

* fixed length input and output
* mechanism for handling sets
St St+1
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Rule learning: training datais (s, a, s')

Outer loop over set of rules
» Greedily add best next deictic reference to generate new rule

Inner loop
 EM-method for deciding which rule(s) account for which training examples
* Predict mean and variance for each property
* Gradient descent on NN that predicts next values, minimize conditional log likelihood
St St+1
b1 Pk P1 Pk
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Preliminary results: pushing objects on crowded table

Compare likelihood on held-out data
e Learned rule-based model
* Neural network trained on vector of attributes of all objects
* Pushed object always first
e Other objects sorted by distance from first




Sparse rules learn with less data (3 objects in all scenes)
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Sparse rules unaffected by clutter
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Learning a new operator

1. Determine which other objects may affect or be affected by this policy
 Old approach (Pasula, Zettlemoyer, K)
 Preliminary new approach (Xia, Wang, K)

2. Learn detailed relation on properties of all these objects that predicts
when the policy will have its intended effect

 Gaussian process method also supports planning
(Wang, Garrett, K, Lozano-Perez)



Operator description for planning:
when will skill achieve result?

Infer2Control Workshop

Result: Contains(Dest, Liquid) Saturday 3:30PM
Skill: Pour(Gain) ool
Preimage:

e Contains(Source, Liquid) RX, Ry

Holding(Source, Grasp)

+ Shape(Source) = (Swidth, Sheight) A H

Shape(Dest) = (Dwidth, Dheight)
RelPose(Source, Dest) = (Rx, Ry)
Constraint(Sw, Sh, Dw, Dh, Rx, Ry, Grasp, Gain)

Wang, Garrett, K, Lozano-Perez; IROS 2018
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Preliminary results on robot (learning constraint only)

Substantial variability in
* starting arrangement
e goal

Given pick/place operators

Learned pour and push




Lots to do

 Quantify "epistemic" uncertainty in learned models
Infer2Control Workshop

* Combine with active learning approach Saturday 3:30 PM

RLin POMDP Workshop

 Extend to partial observability Saturday 9:05 AM



Thanks. And out-takes to watch during questions




