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Impressive Feats in AI

Why are these impressive?
They perform a complex task very well, 
sometimes even better than a human.

What is equally important: Generality: ability to perform many tasks
 but not impressive 

(on the surface)
How can we build generalists?

“specialists”



It turns out — the simpler, but broader capabilities are really hard.
(Moravec’s Paradox)

This talk: can we do the unimpressive things?

Simple, yet general, manipulation skills are 
beyond the scope of current methods.



Can we build an agent that can do many tasks?

learning a policy in 
a closed universe

from pixel observations, with limited supervision, in the physical world

learn general-purpose model  
+ 

plan with model for many tasks

model-based control

Arruda, Mathew, Kopicki, 
Mistry, Azad, Wyatt ‘17

Yu, Bauza, Fazeli, Rodriguez ‘17

Petrovskaya, Park, Khatib ‘07



Can we build an agent that can do many tasks?

learning a policy in 
a closed universe

from pixel observations, with limited supervision, in the physical world

learn general-purpose model  
+ 

plan with model for many tasks

modeling diverse, open-
world environments

structured latent space 
model for long-horizon tasks



1. Collect diverse interactions

2. Learn structured 
representation & model

Greater diversity —> more general-
purpose model

Structure —> long-horizon reasoning

3. Plan using model
Online planning —> many tasks

Janner, Levine, Freeman, Tenenbaum, Finn, Wu ’18 

Goal: be able to build any tower of blocks

Michael Janner Jiajun Wu



Learn structured representation & model
object-centric model

Eslami et al. ’16, 
Kosiorek et al. ‘18

full supervision of 
object properties

Wu et al. ‘17

Assume: object segmentation masks for individual frames

segment pixels

Janner, Levine, Freeman, Tenenbaum, Finn, Wu ’18 

simple, 2D scenes
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Learn structured representation & model
object-centric model

Eslami et al. ’16, 
Kosiorek et al. ‘18

full supervision of 
object properties

Wu et al. ‘17

Assume: object segmentation masks for individual frames

segment pixels

object representations

compose into final frame

Janner, Levine, Freeman, Tenenbaum, Finn, Wu ’18 
All modules trained with reconstruction loss (L2+LVGG)

simple, 2D scenes



Plan using model
goal space: image of object configuration 
action space: which object & where to drop

- sampling-based, beam search to plan action sequence 
- evaluate action sequence based on distance in latent space & pixel space 
- replan after each action

Janner, Levine, Freeman, Tenenbaum, Finn, Wu ’18 

selected actions

1-step predictions



Janner, Levine, Freeman, Tenenbaum, Finn, Wu ’18 

Learning model on diverse interactions    
Structured latent space

achieve many tasks
achieve complex, long-horizon tasks

Real world performance with single mode

Takeaways



Can we build an agent that can do many tasks?

learning a policy in 
a closed universe

structured latent space 
model for long-horizon tasks

from pixel observations, with limited supervision, in the physical world

modeling diverse, open-
world environments

learn general-purpose model  
+ 

plan with model for many tasks



Diverse Open-World Environments

Pinto & Gupta ‘16

Levine, Pastor, Krizhevsky, Quillen ‘16

self-supervised robot learning

Nair*, Chen*, Agrawal*, Isola,  
Abbeel, Malik, Levine ‘17

Our goal: generalize to novel objects 
and, also to many tasks

(by learning a general-purpose model)

Overall approach: Collect data, learn model, plan to achieve many tasks



Collect diverse data in a scalable way

In contrast to policy learning: no notions of progress or success!



Models capture general-purpose 
knowledge about the world

Use all of the available 
supervision signal.

Also: No assumptions about task representations.

Contrast to:

Learn to predict

It, at:t+H It:t+H



Are these models useful?

How can we use these models to plan? 
(to achieve many human-specified goals)



1. Consider potential action sequences 
2. Predict the future for each action 

sequence 
3. Pick best future & execute 

corresponding action 
4. Repeat 1-3 to replan in real time

Planning with Visual Foresight

visual “model-predictive control” (MPC)



Finn, Goodfellow, Levine NIPS ’16 
Finn & Levine ICRA ‘17

How to predict video?

- deep recurrent network

- action-conditioned

- explicitly model motion

- multi-frame prediction



Which future is the best one?

Selecting where 
pixels should move.

Providing an image 
of the goal.

Human specifies a goal by:

Finn & Levine ICRA ’17 
Ebert, Lee, Levine, Finn CoRL ’18 
Xie, Singh, Levine, Finn CoRL ‘18

Providing a few 
examples of success.



Ebert*, Finn*, Dasari, Xie, Lee, Levine. Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control.

Specify goal

Visual MPC 
w.r.t. goal

Visual MPC execution

Sudeep DasariFrederik Ebert

How it works



(covering an object)
Specify goal

Visual MPC execution

How it works

Sudeep DasariFrederik Ebert

Ebert*, Finn*, Dasari, Xie, Lee, Levine. Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control.



Given 5 examples of success Visual MPC with learned objective

infer goal classifier

visual MPC w.r.t. 
goal classifier

Novel Object Positioning via Visual Foresight

Xie, Singh, Levine, Finn. Few-Shot Goal Inference for Visuomotor Learning and Planning, CoRL 2018

Annie Xie Avi Singh

How it works



Planning with a single model for many tasks
Video speed: 2x



Demo at NIPS 2017: Long Beach, CA

one-shot 
imitation

planning with visual models

The students were 
unimpressed.

Demo at AI4ALL Outreach Camp

(but still had fun)



Can we build an agent that can do many tasks?
from pixel observations, with limited supervision, in the physical world

modeling diverse, open-
world environments

structured latent space 
model for long-horizon tasks

+ complex, long-horizon tasks

+ significant object diversity 
+ minimal supervision

Takeaways

Future work: best of both worlds?



Future work: How can we build better, more useful models of the world?

Can we model uncertainty over 
future observations?

Can we adapt the model with a 
small amount of experience?

How should we model the reward?

Lee, Zhang, Ebert, Abbeel, Finn, Levine. 2018

Stochastic adversarial video prediction

More and more uncertainty over time.

Physical properties unknown until interaction.

Agents need internal representation of the 
goal in the real world.

Xie, Singh, Levine, Finn. CoRL 2018

Goal inference from images

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. 2018

Few-shot, online model adaptation



Questions?

Collaborators

Papers, data, and code linked at: people.eecs.berkeley.edu/~cbfinn

Sergey Levine Pieter Abbeel Josh Tenenbaum Jiajun WuBill Freeman

Annie Xie Avi SinghSudeep DasariFrederik Ebert Michael Janner

http://people.eecs.berkeley.edu/~cbfinn

