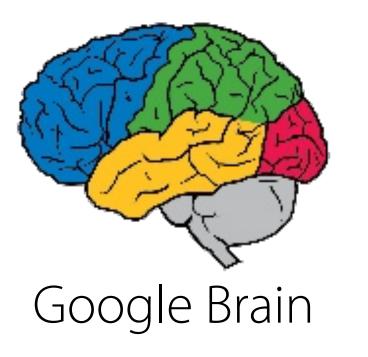
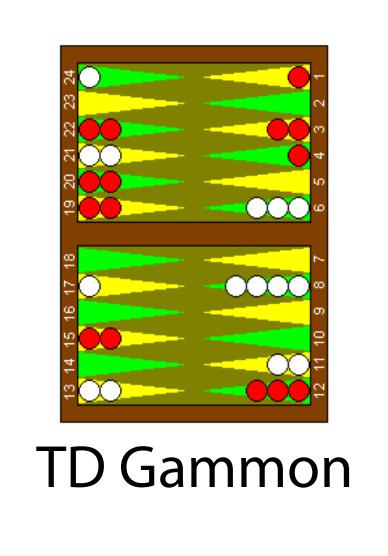


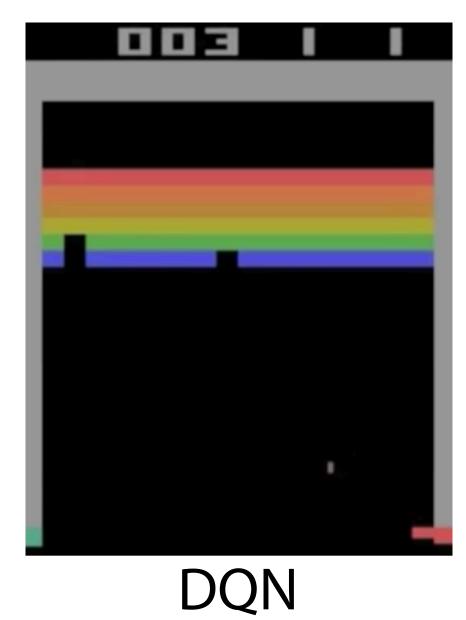


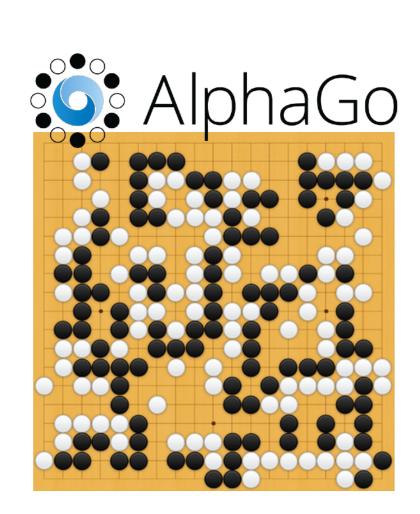
An agent that can do many things (by modeling the world) Chelsea Finn



Impressive Feats in Al







Why are these impressive?

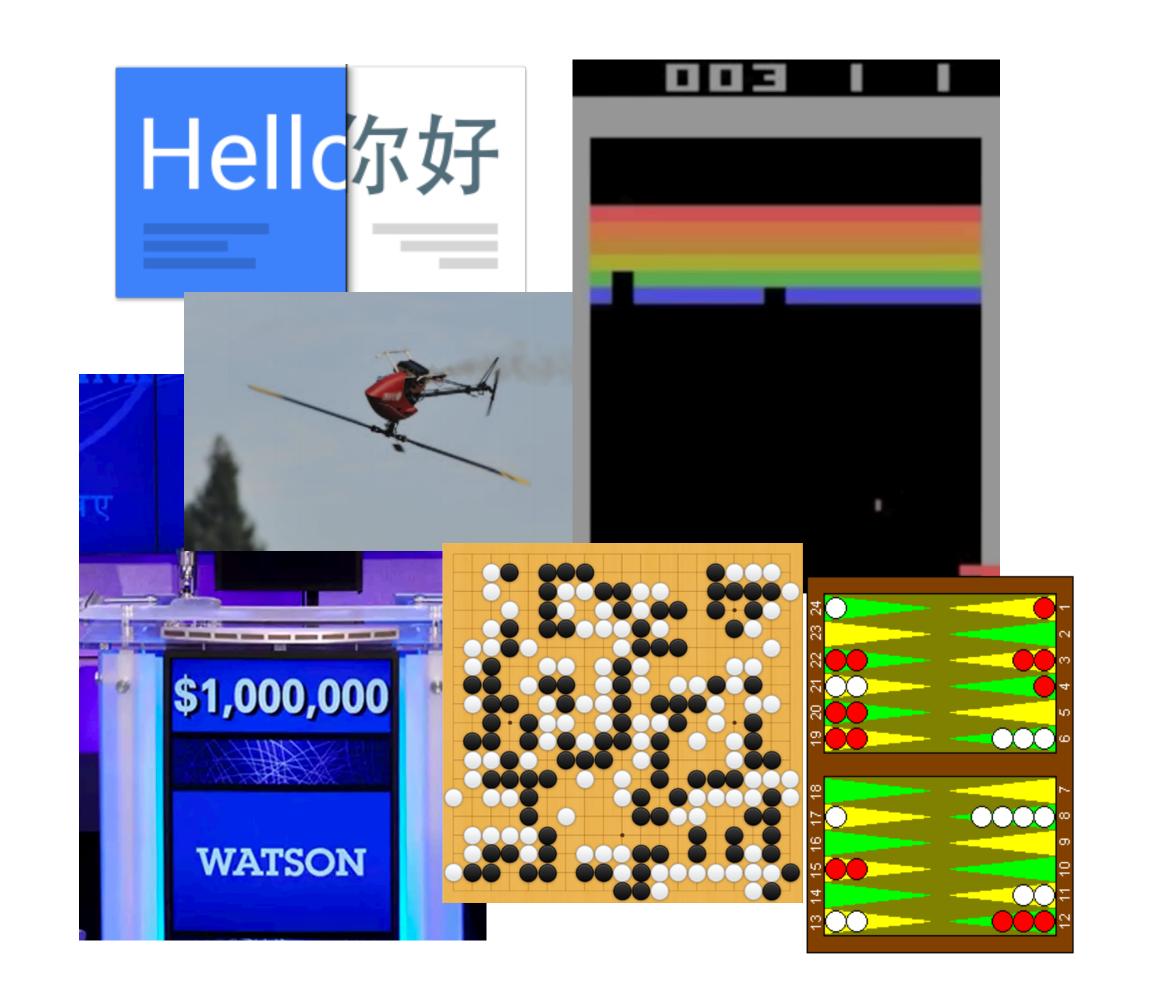
They perform a **complex task** very well, sometimes even better than a human.

"specialists"

What is equally important: but not impressive (on the surface)

Generality: ability to perform many tasks

How can we build *generalists*?

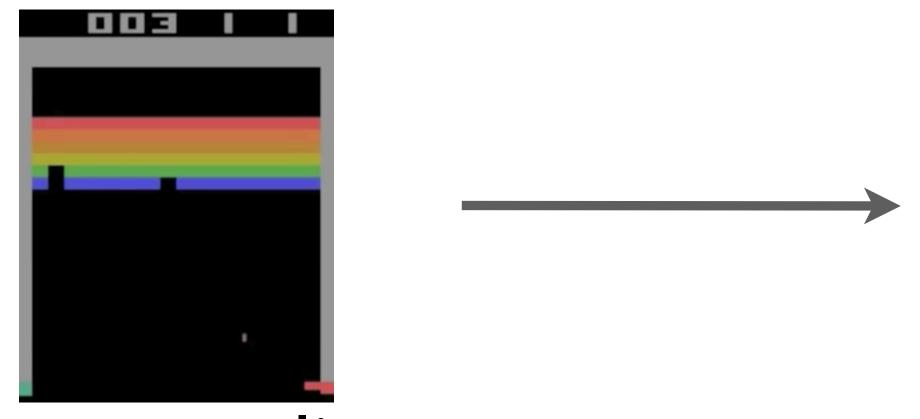


Simple, yet **general**, manipulation skills are beyond the scope of current methods.

It turns out — the **simpler**, but **broader** capabilities are **really hard**. (Moravec's Paradox)

This talk: can we do the unimpressive things?

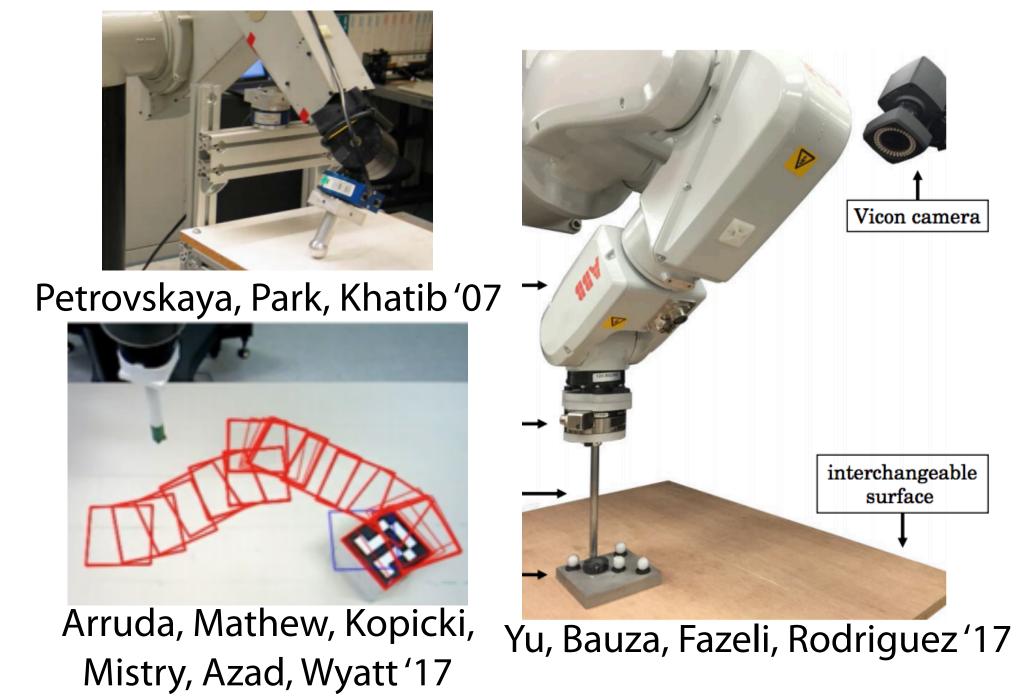
Can we build an agent that can do many tasks?



learning a policy in a closed universe

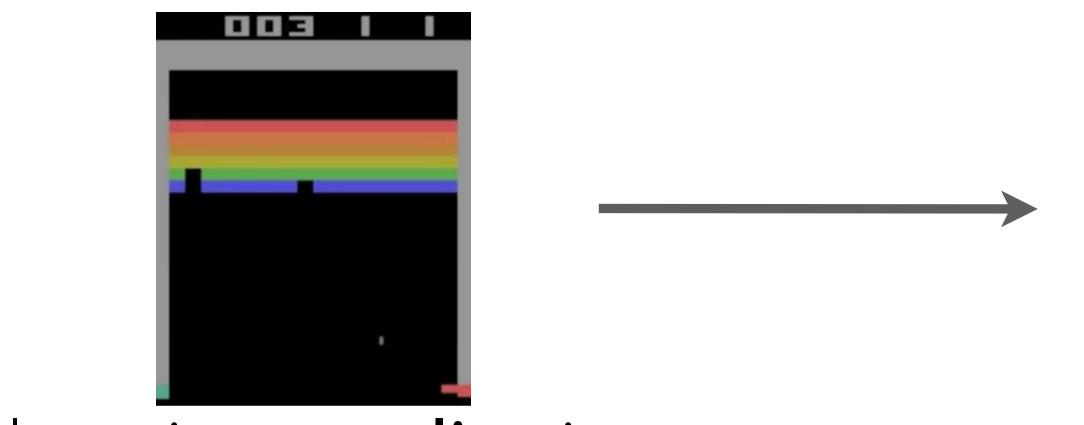
learn general-purpose model + plan with model for many tasks

model-based control



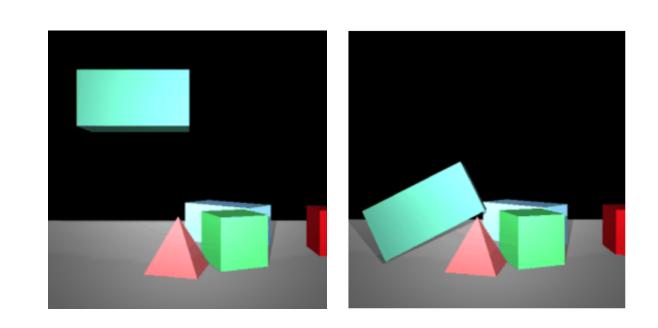
from pixel observations, with limited supervision, in the physical world

Can we build an agent that can do many tasks?



learn general-purpose model

plan with model for many tasks



structured latent space model for long-horizon tasks

modeling diverse, openworld environments

from pixel observations, with limited supervision, in the physical world

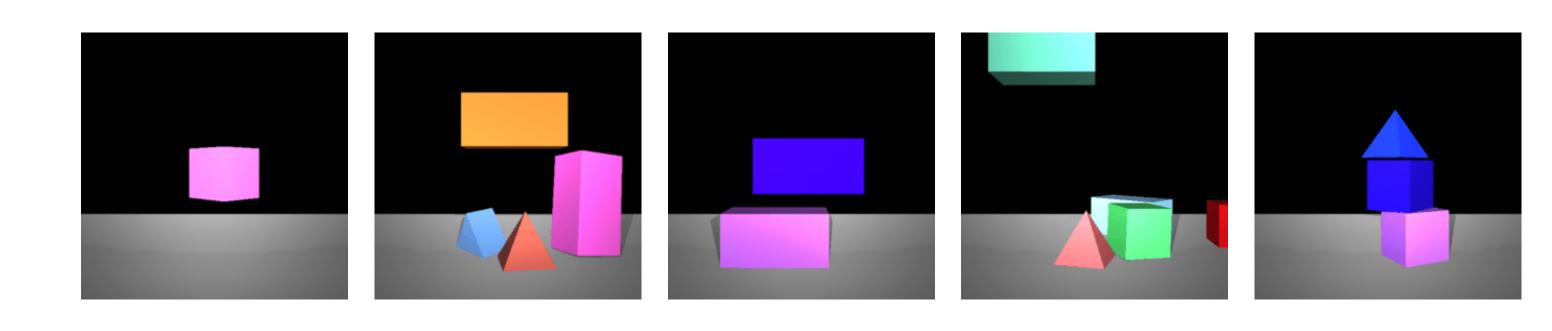
1. Collect **diverse** interactions

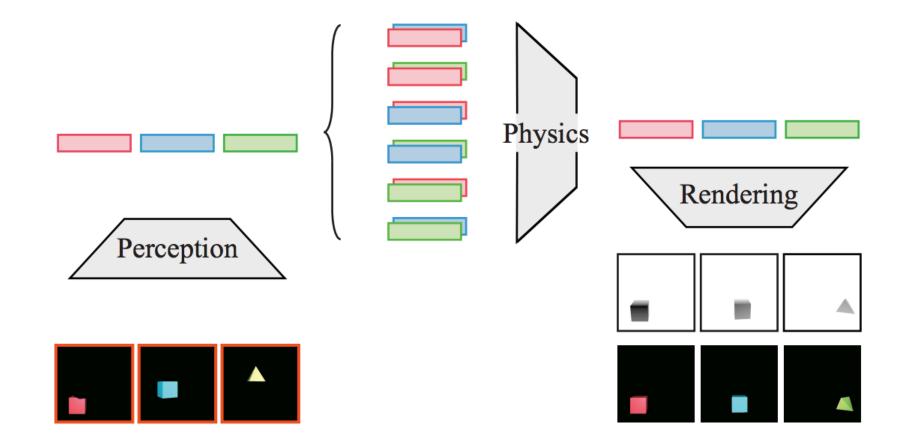
Greater diversity —> more generalpurpose model

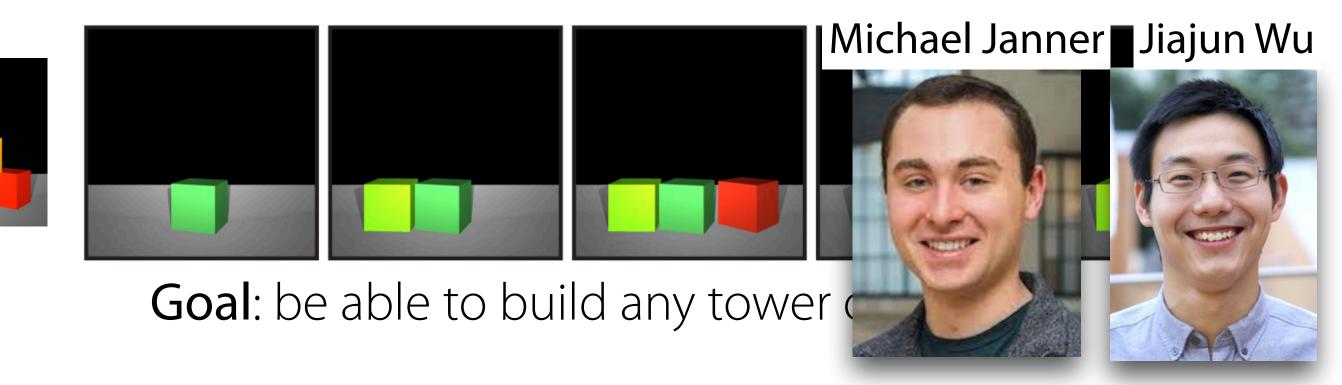
Structure —> long-horizon reasoning

3. Plan using model

Online planning —> many tasks

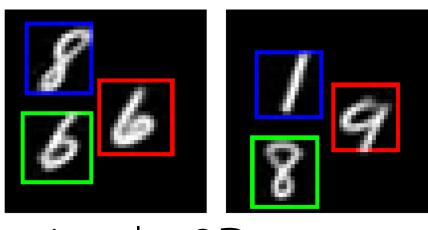






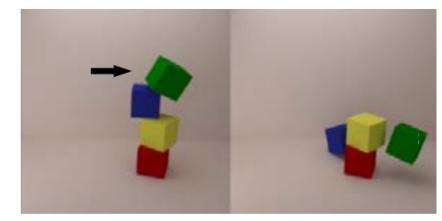
Assume: object segmentation masks for individual frames

Eslami et al. '16, Kosiorek et al. '18

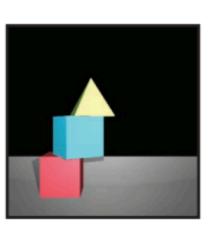


simple, 2D scenes

Wu et al. '17

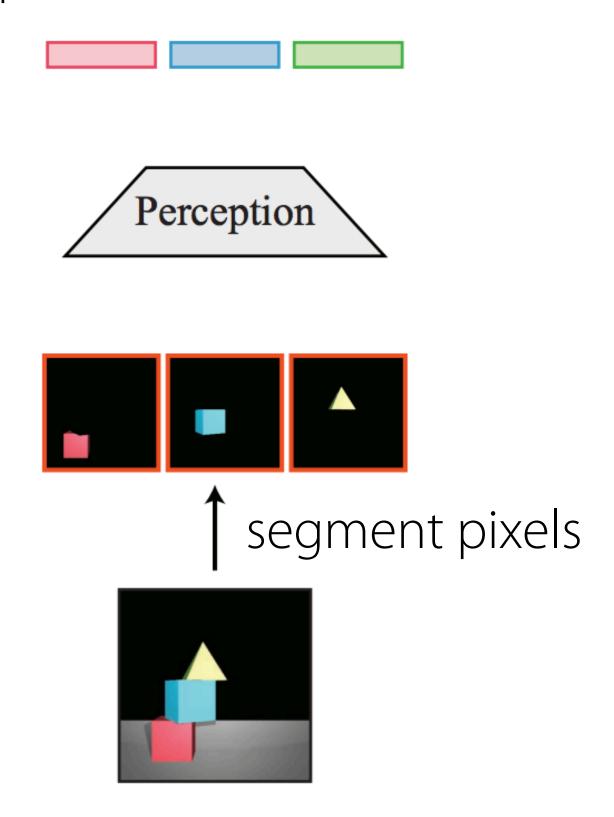


full supervision of object properties

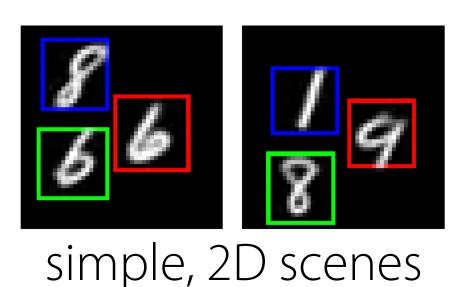


Assume: object segmentation masks for individual frames

object representations



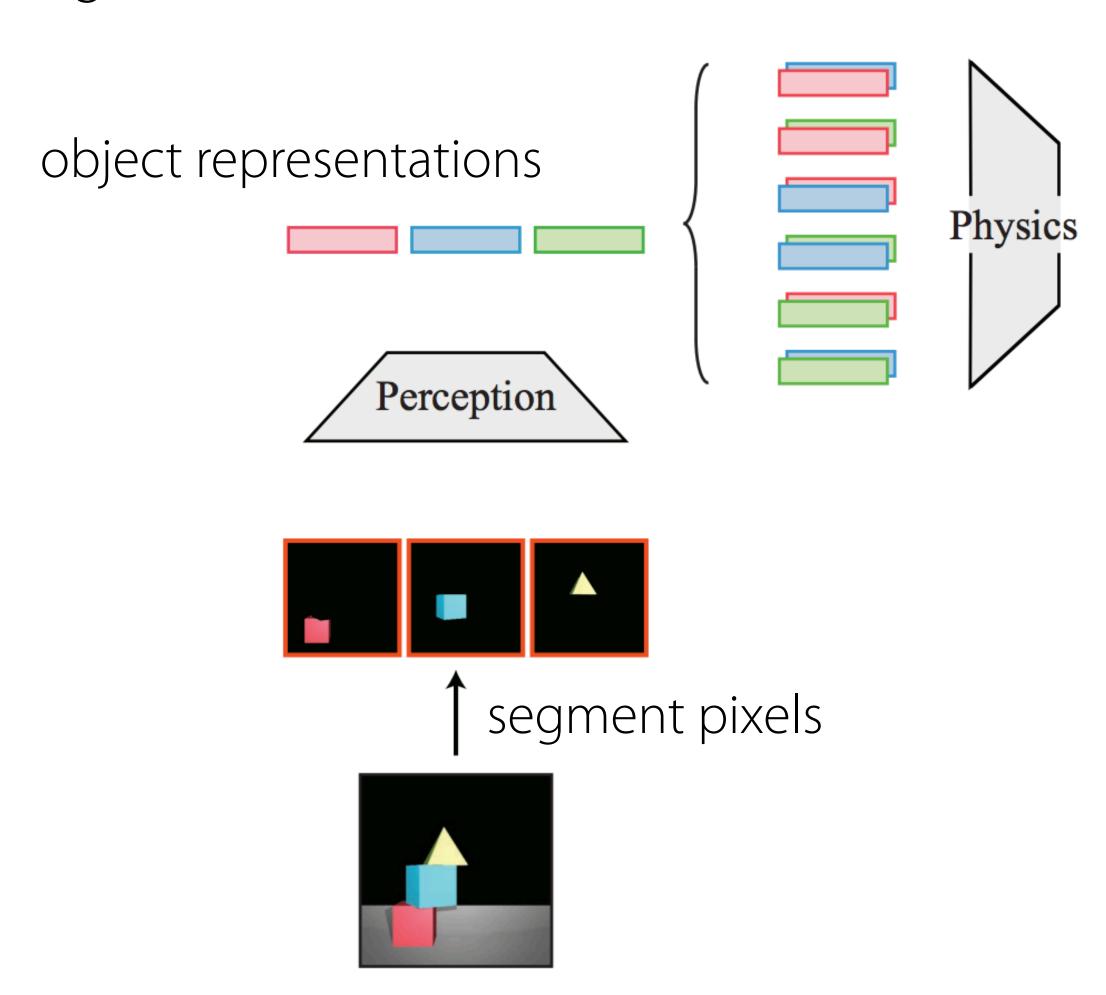
Eslami et al. '16, Kosiorek et al. '18



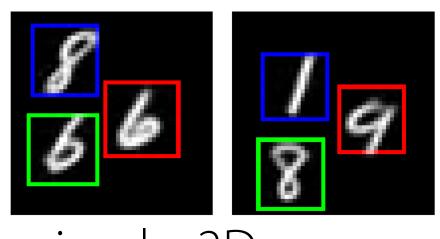
object properties

Wu et al. '17

Assume: object segmentation masks for individual frames

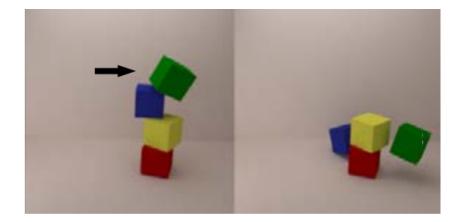


Eslami et al. '16, Kosiorek et al. '18



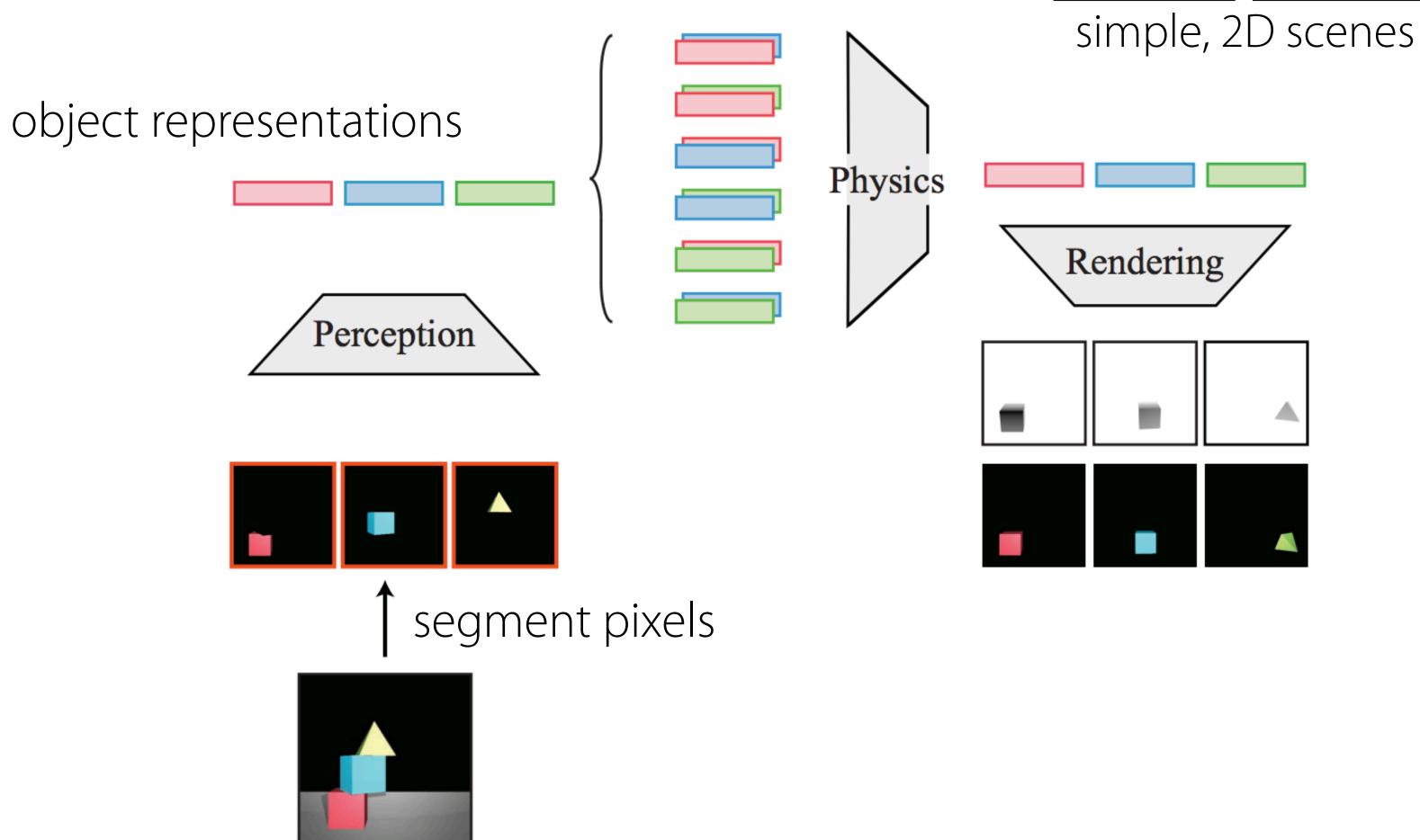
simple, 2D scenes

Wu et al. '17

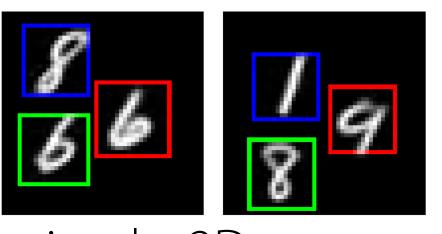


full supervision of object properties

Assume: object segmentation masks for individual frames



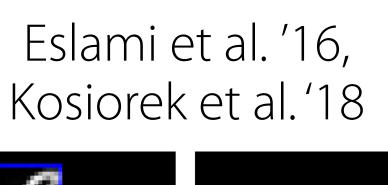
Eslami et al. '16, Kosiorek et al. '18

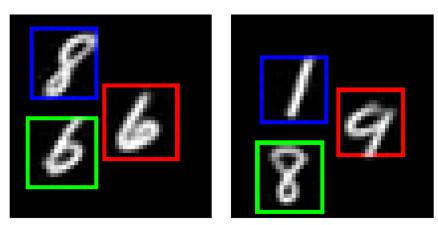


full supervision of object properties

Wu et al. '17

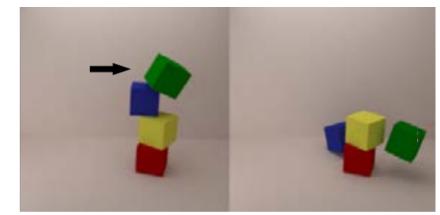
Assume: object segmentation masks for individual frames



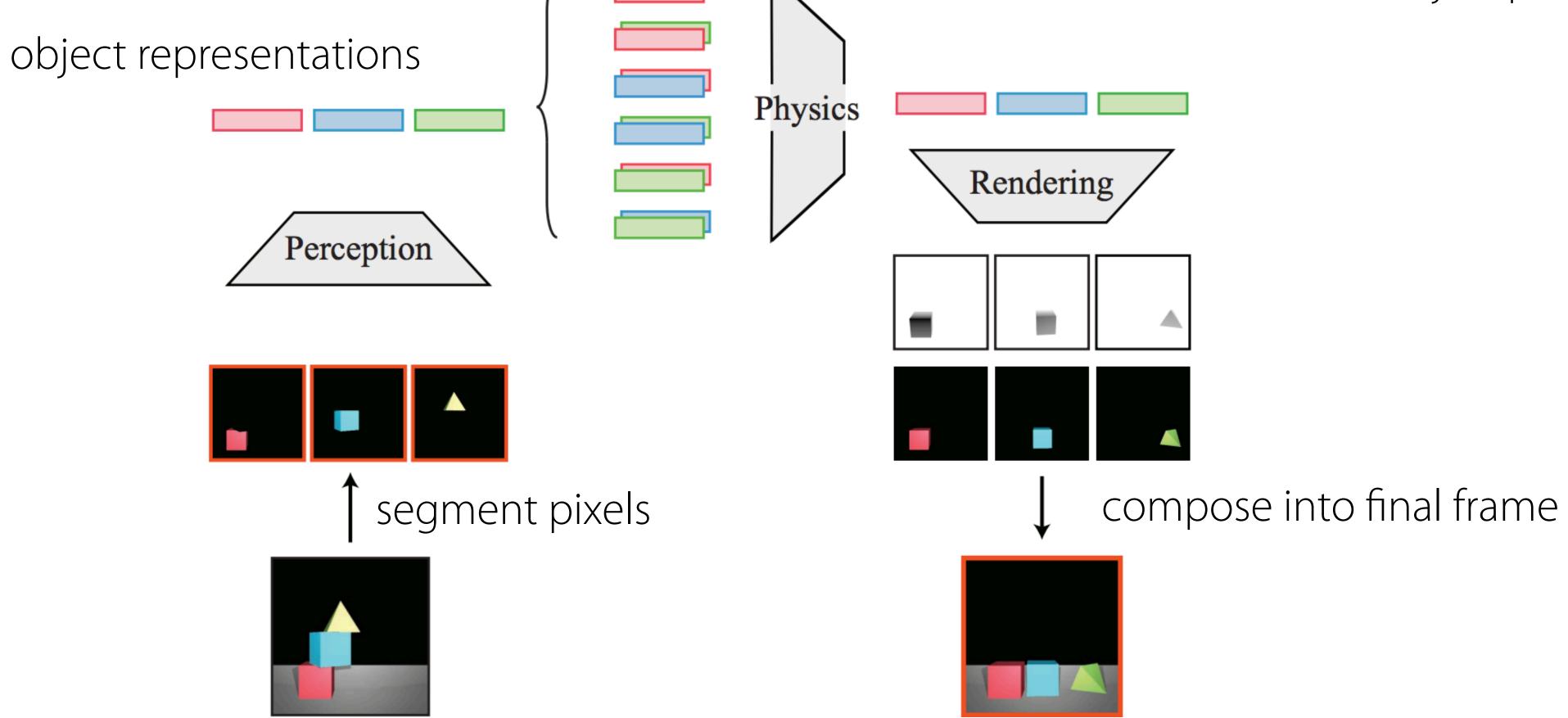


simple, 2D scenes

Wu et al. '17



full supervision of object properties

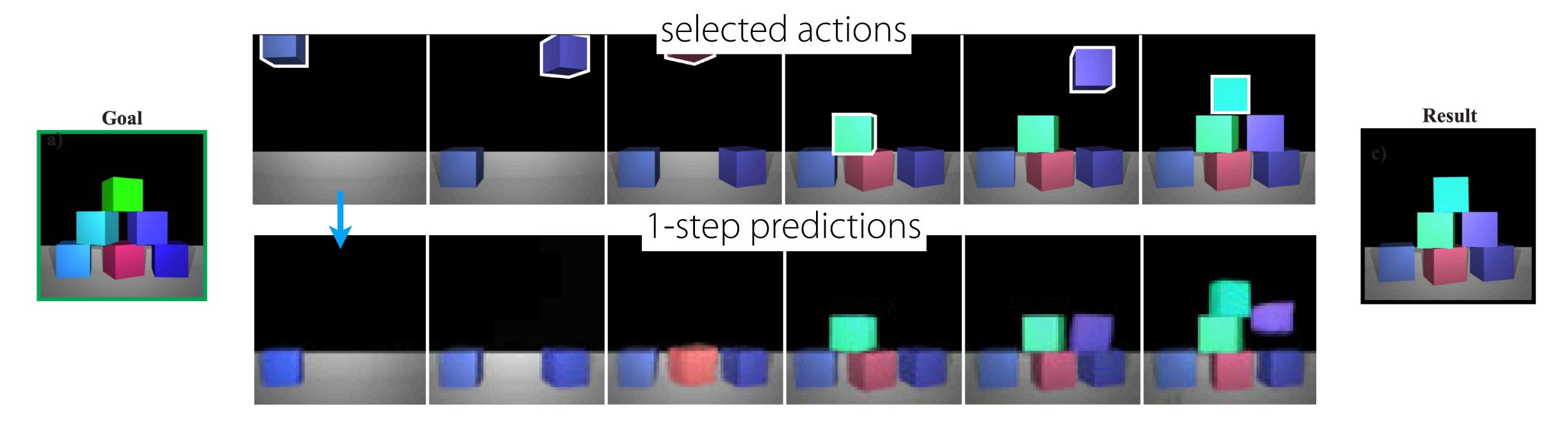


All modules trained with **reconstruction loss** (L_2+L_{VGG})

Plan using model

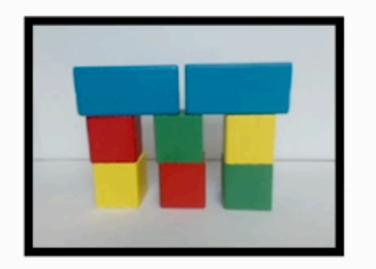
goal space: image of object configuration

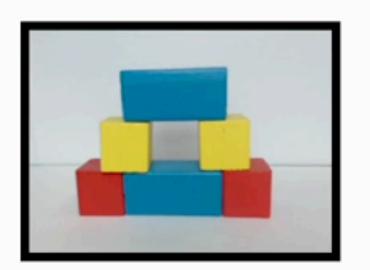
action space: which object & where to drop

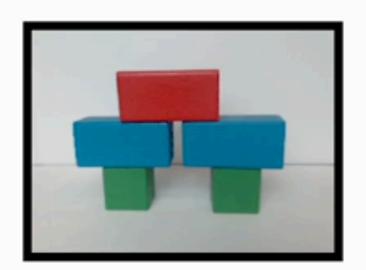


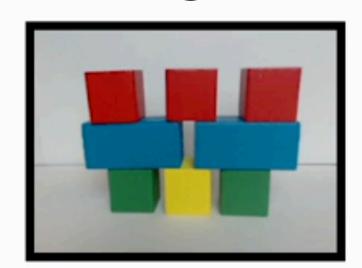
- sampling-based, beam search to plan action sequence
- evaluate action sequence based on distance in latent space & pixel space
- replan after each action

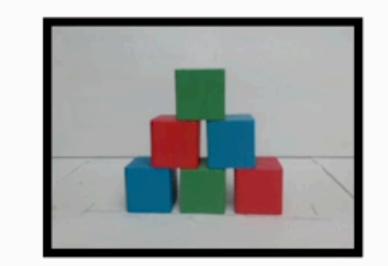
Real world performance with single mode



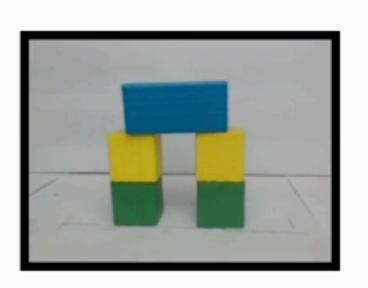


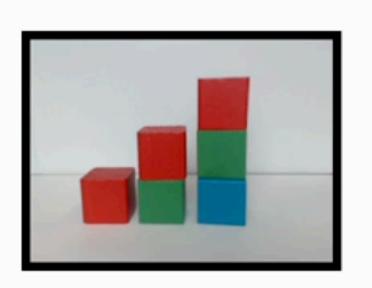


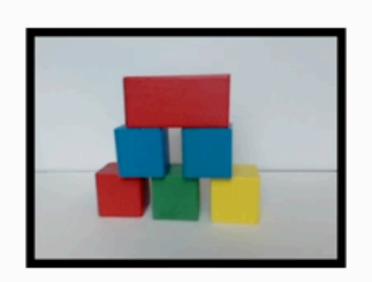


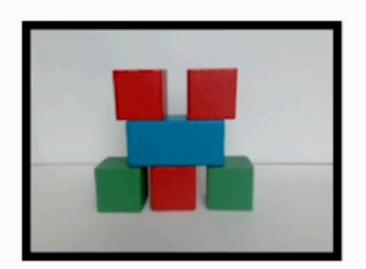


goal images







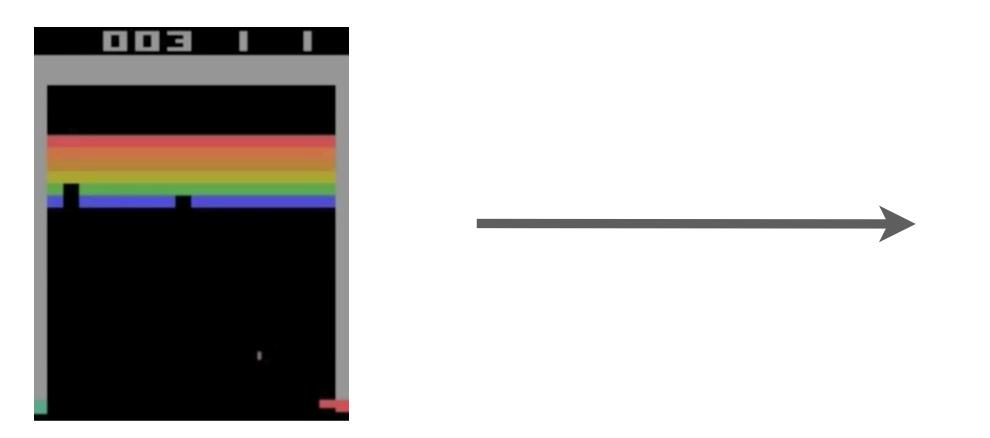


Takeaways

Learning model on diverse interactions --> achieve many tasks

Structured latent space --> achieve complex, long-horizon tasks

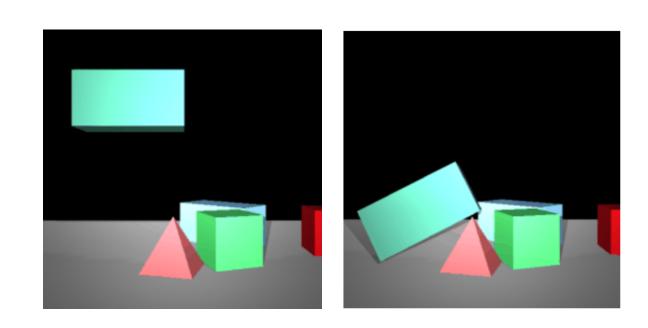
Can we build an agent that can do many tasks?



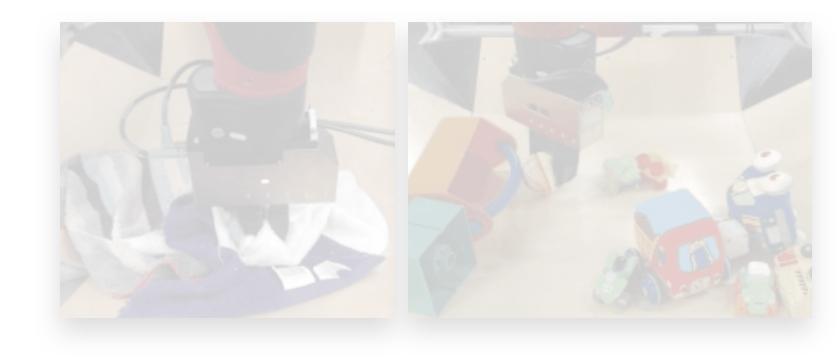
learn general-purpose model

plan with model for many tasks

learning a policy in a closed universe



structured latent space model for long-horizon tasks

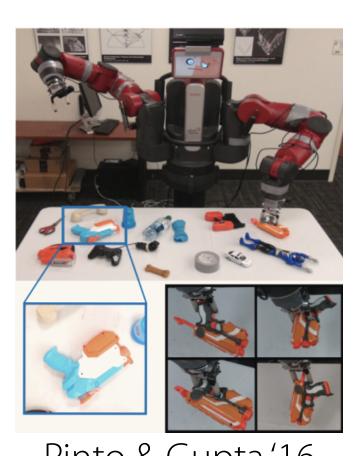


modeling diverse, openworld environments

from pixel observations, with limited supervision, in the physical world

Diverse Open-World Environments

self-supervised robot learning



Pinto & Gupta '16



Nair*, Chen*, Agrawal*, Isola, Abbeel, Malik, Levine '17

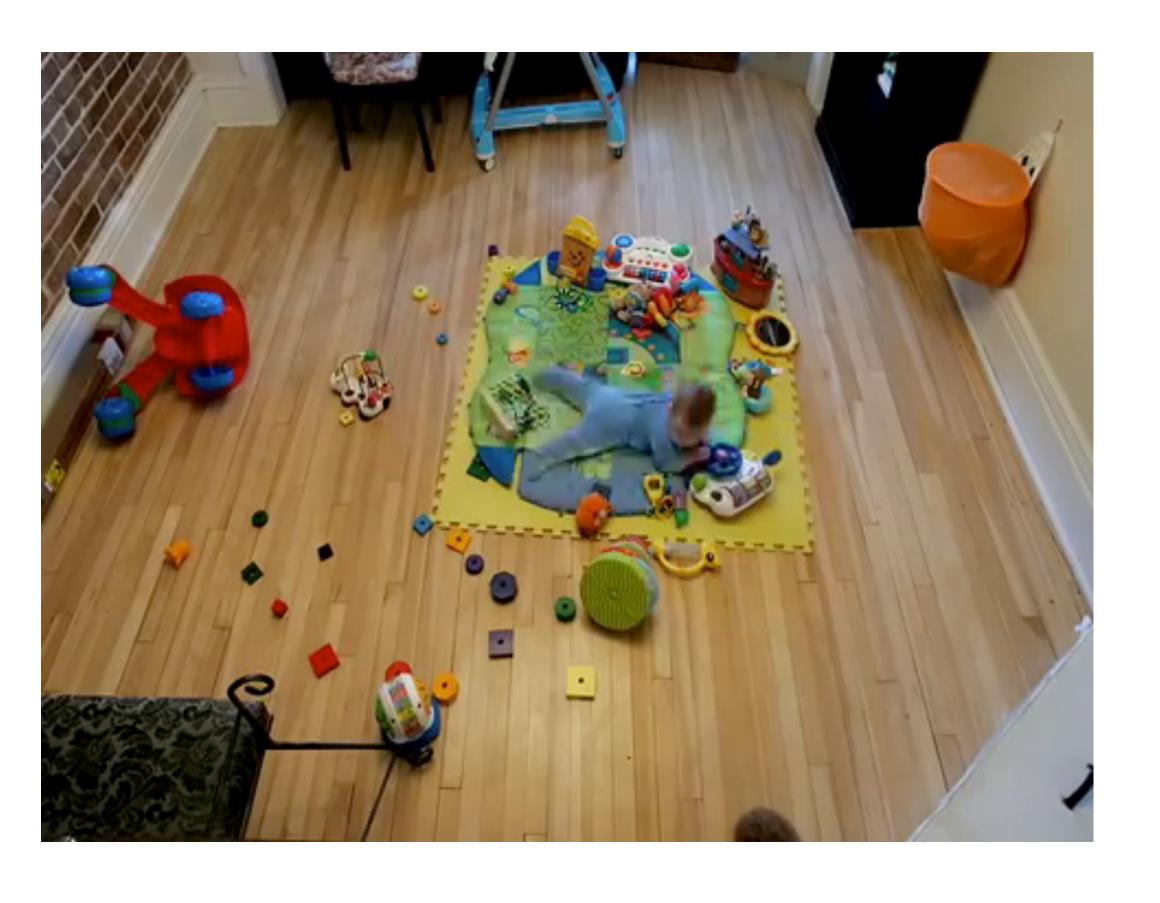
Levine, Pastor, Krizhevsky, Quillen '16

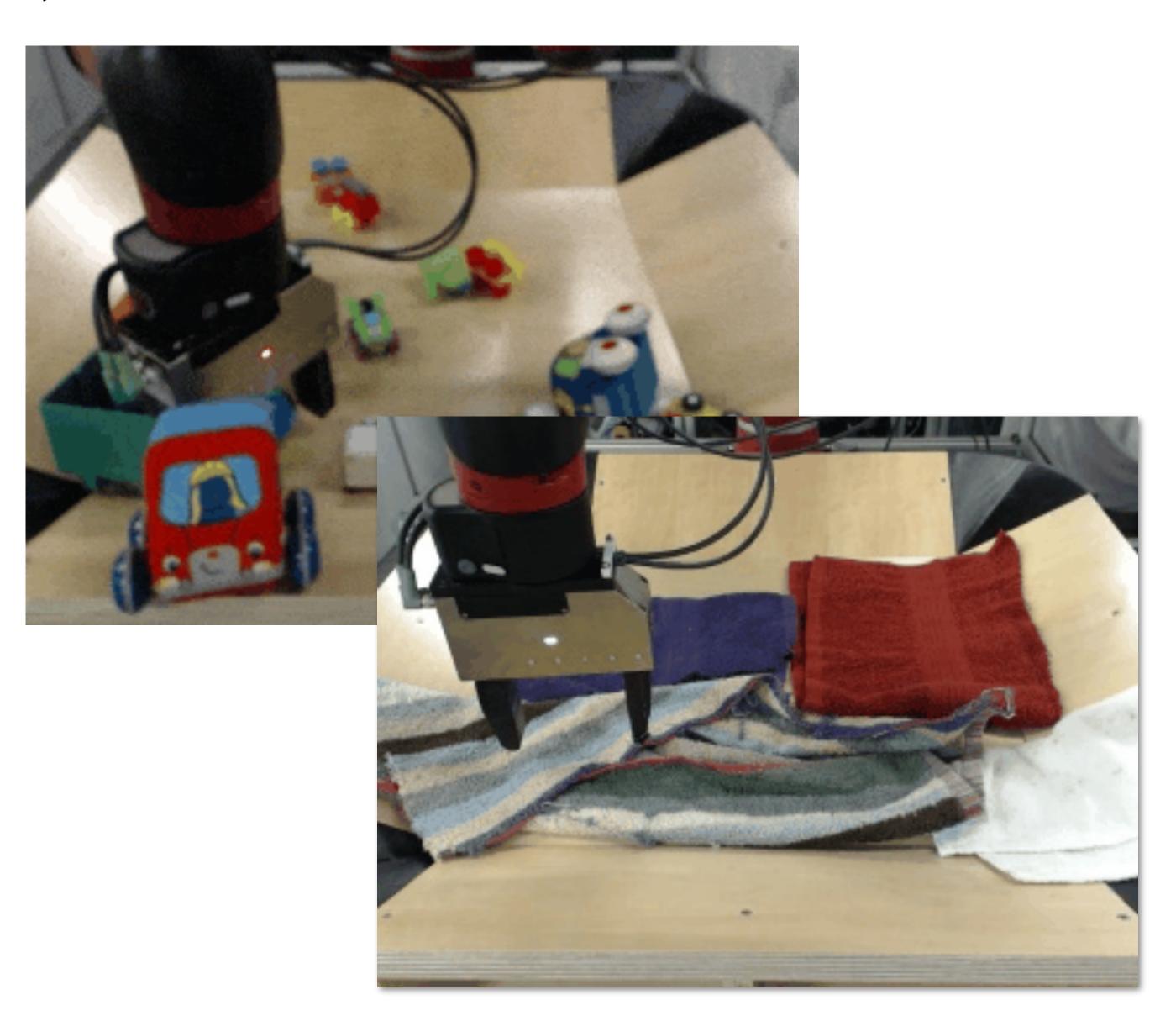
Our goal: generalize to novel objects and, also to many tasks

(by learning a general-purpose model)

Overall approach: Collect data, learn model, plan to achieve many tasks

Collect diverse data in a scalable way

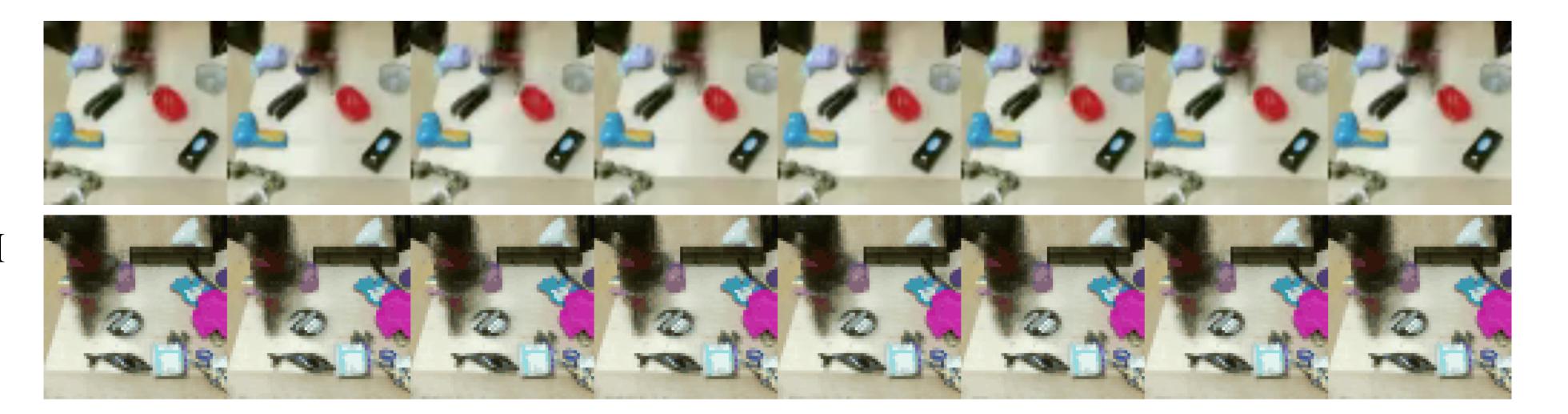




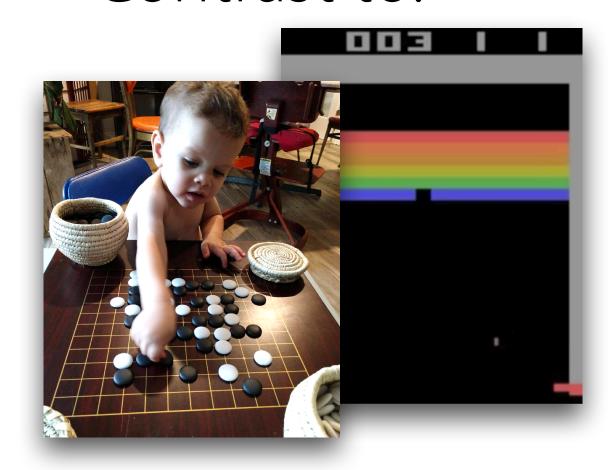
In contrast to policy learning: no notions of progress or success!

Learn to predict

$$I_{t}, a_{t:t+H} \longrightarrow I_{t:t+H}$$



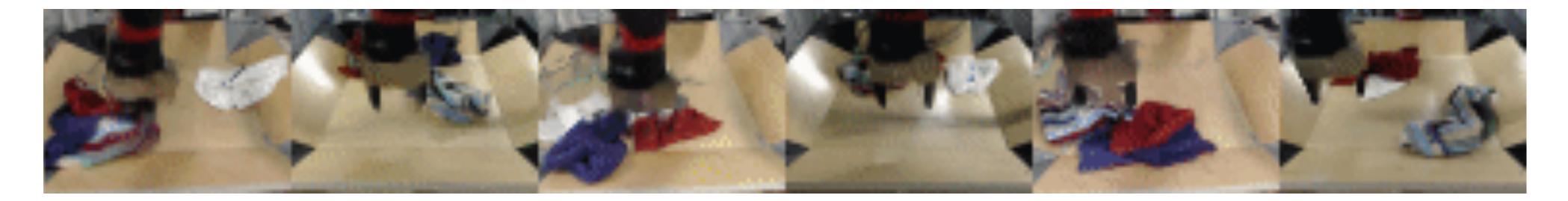
Contrast to:



Models capture **general-purpose** knowledge about the world

Use **all** of the available supervision signal.

Also: No assumptions about task representations.



Are these models useful?

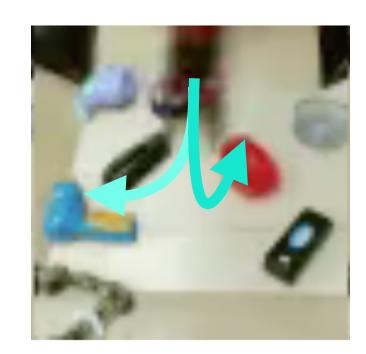
How can we use these models to plan?

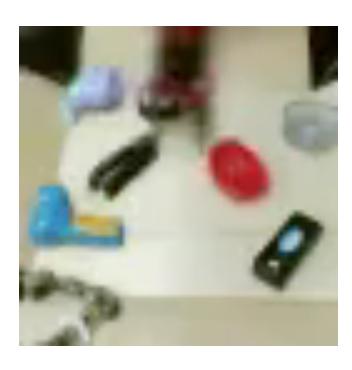
(to achieve many human-specified goals)

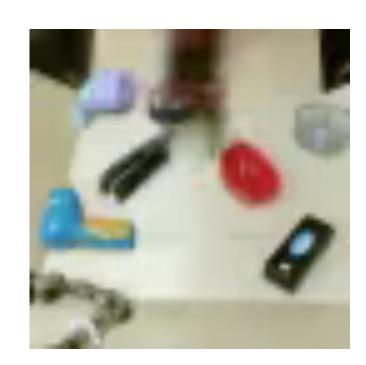
Planning with Visual Foresight

- 1. Consider potential action sequences
- 2. Predict the future for each action sequence
- 3. Pick best future & execute corresponding action
- 4. Repeat 1-3 to replan in real time

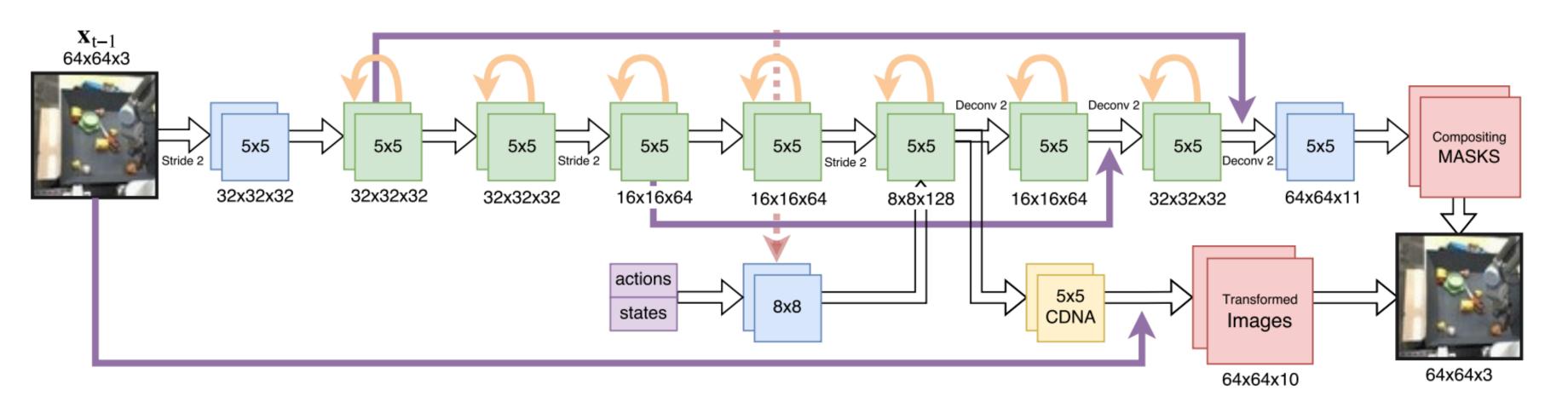
visual "model-predictive control" (MPC)







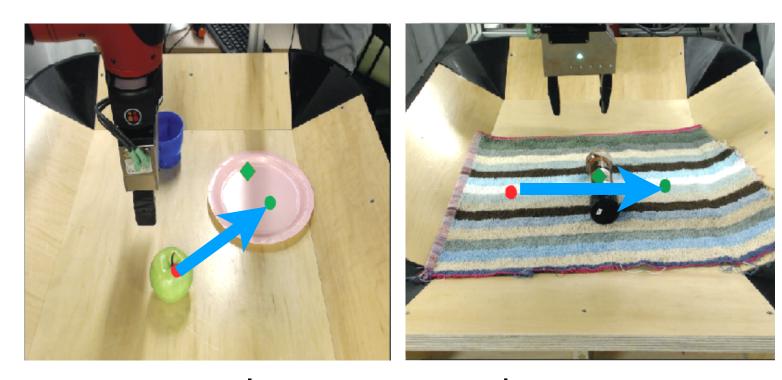
How to predict video?



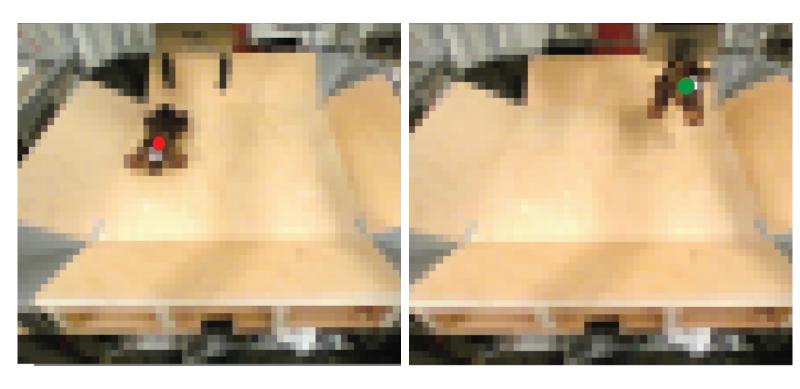
- deep recurrent network
- multi-frame prediction
- action-conditioned
- explicitly model motion

Which future is the best one?

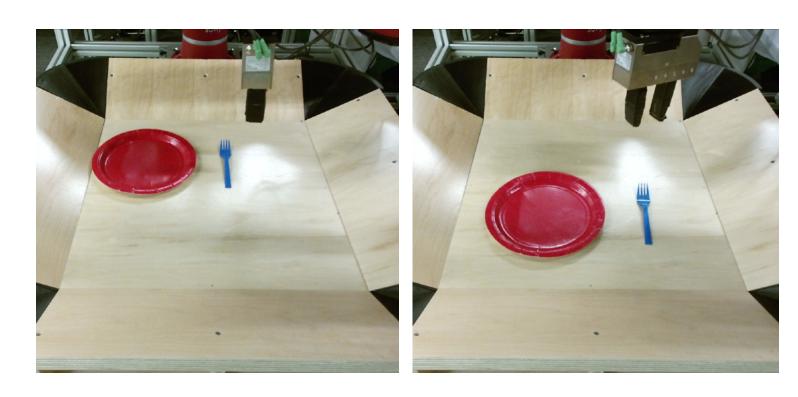
Human specifies a goal by:



Selecting where pixels should move.



Providing an image of the goal.



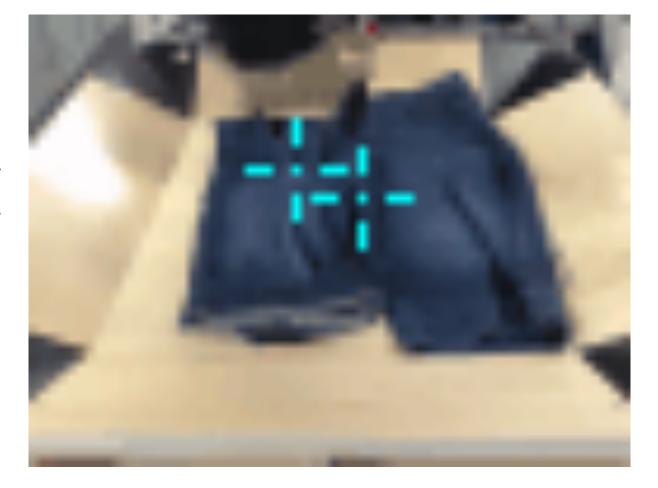
Providing a few examples of success.

Finn & Levine ICRA '17
Ebert, Lee, Levine, Finn CoRL '18
Xie, Singh, Levine, Finn CoRL '18

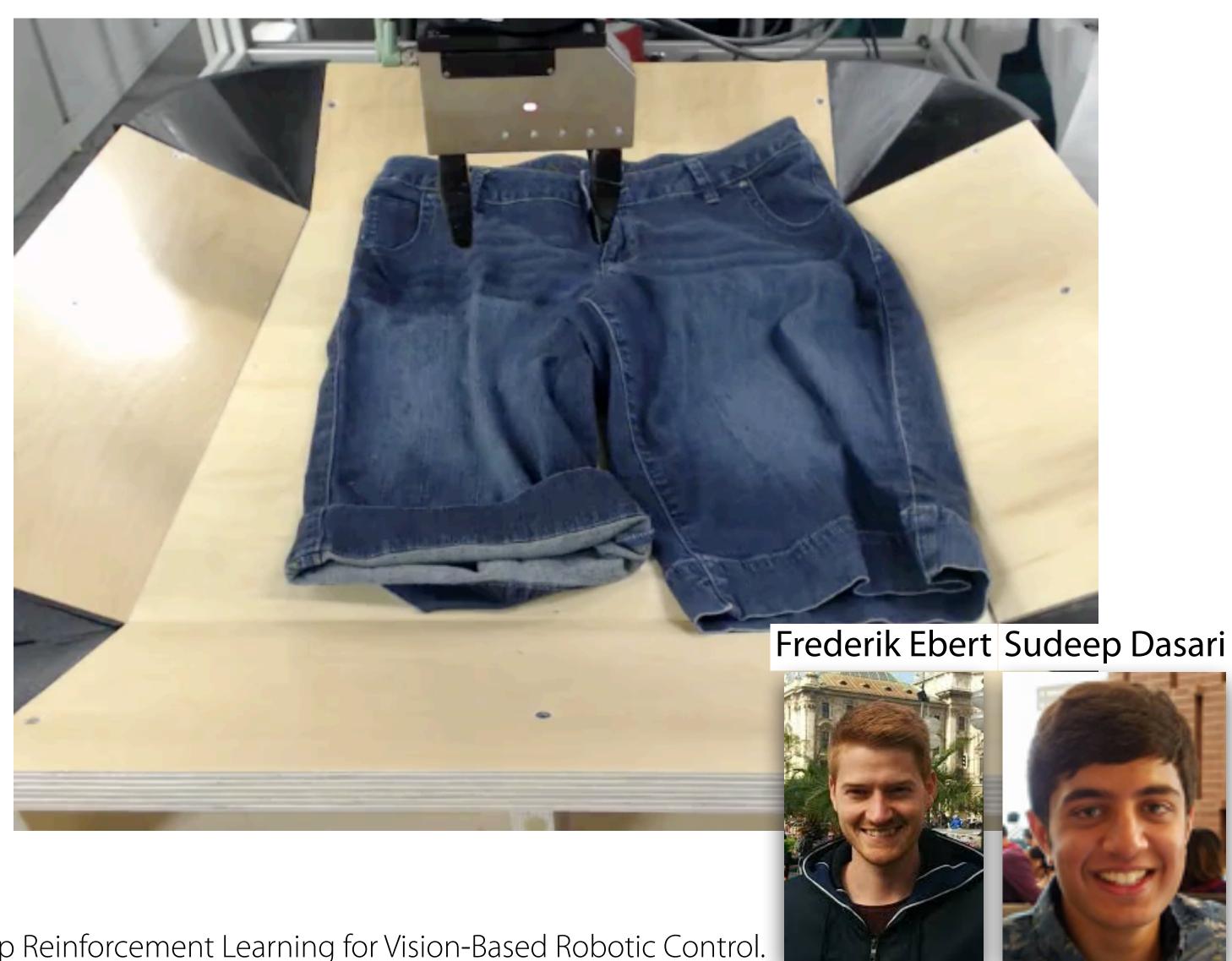
How it works

Specify goal

Visual MPC w.r.t. goal



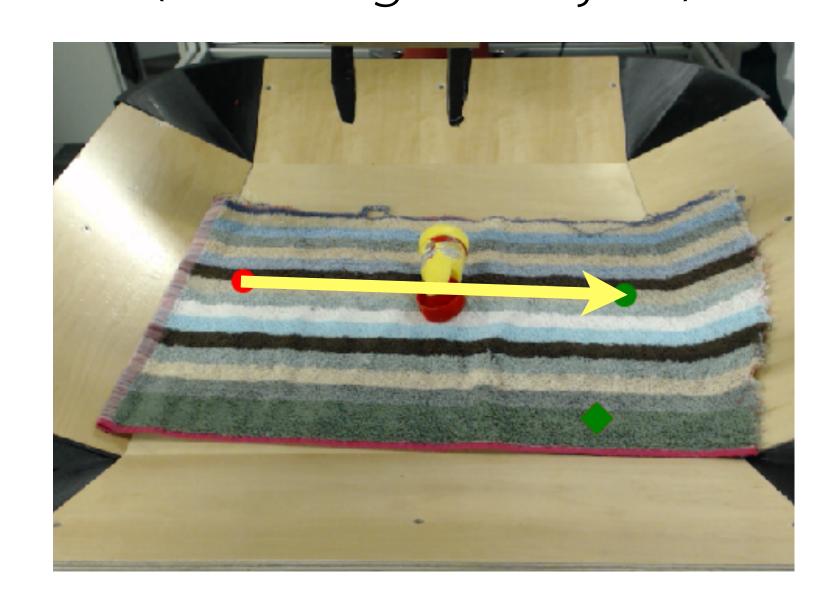
Visual MPC execution



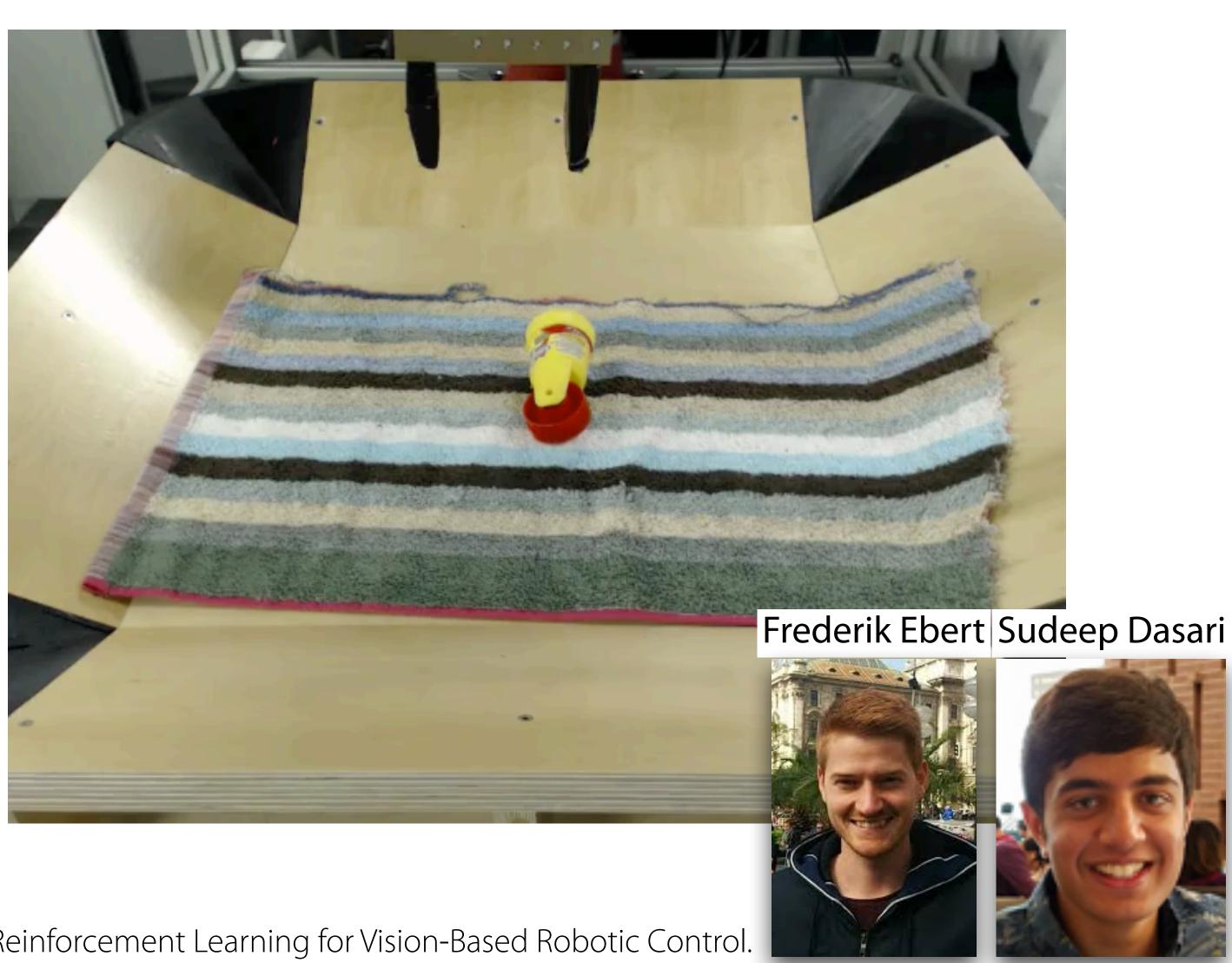
Ebert*, Finn*, Dasari, Xie, Lee, Levine. Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control.

How it works

Specify goal (covering an object)



Visual MPC execution



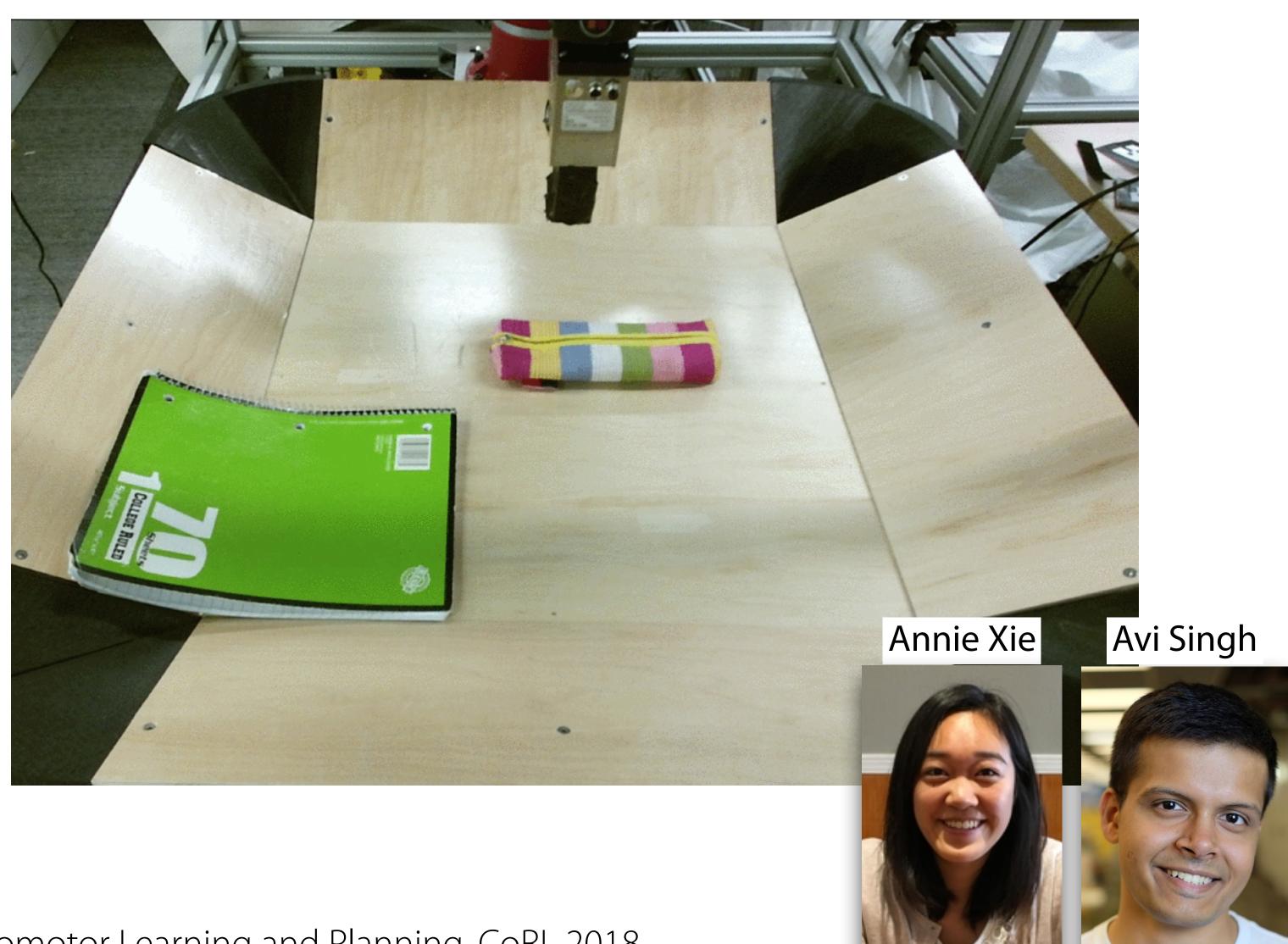
How it works

Given 5 examples of success

infer goal classifier

visual MPC w.r.t. goal classifier

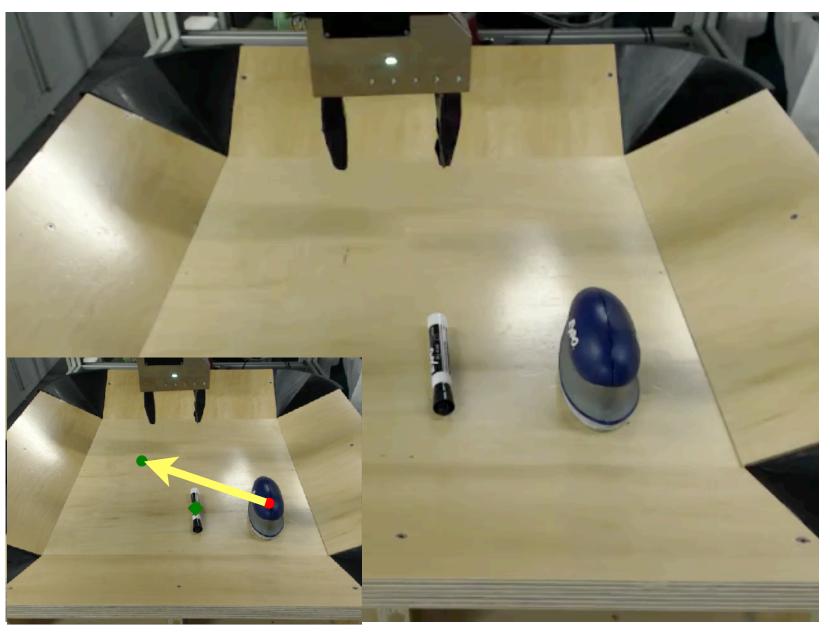
Visual MPC with learned objective

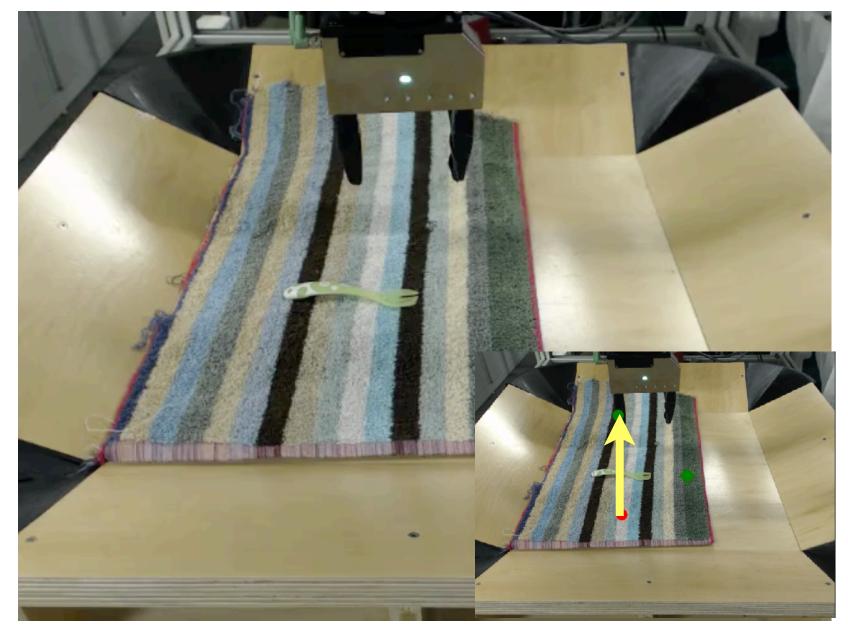


Xie, Singh, Levine, Finn. Few-Shot Goal Inference for Visuomotor Learning and Planning, CoRL 2018

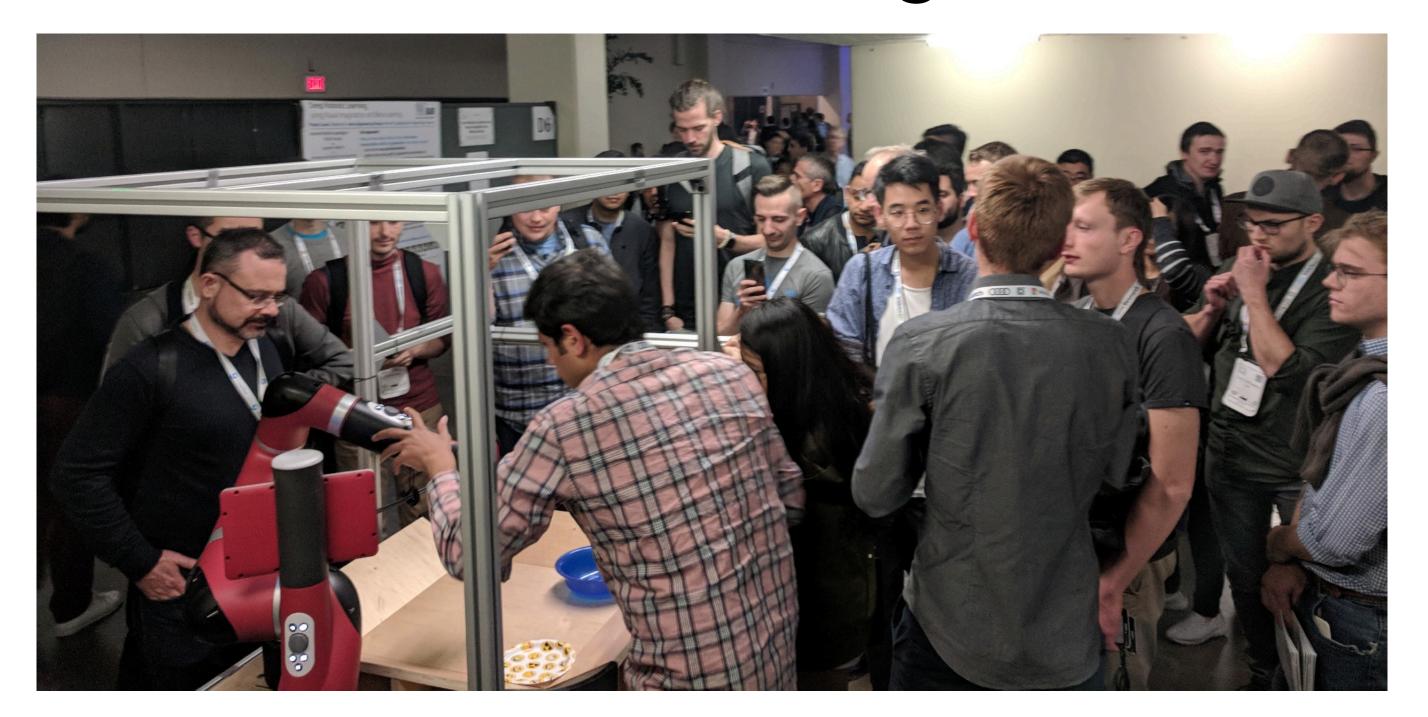
Planning with a single model for many tasks

Video speed: 2x

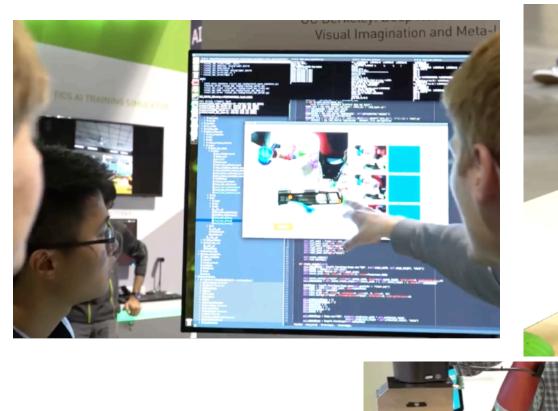




Demo at NIPS 2017: Long Beach, CA

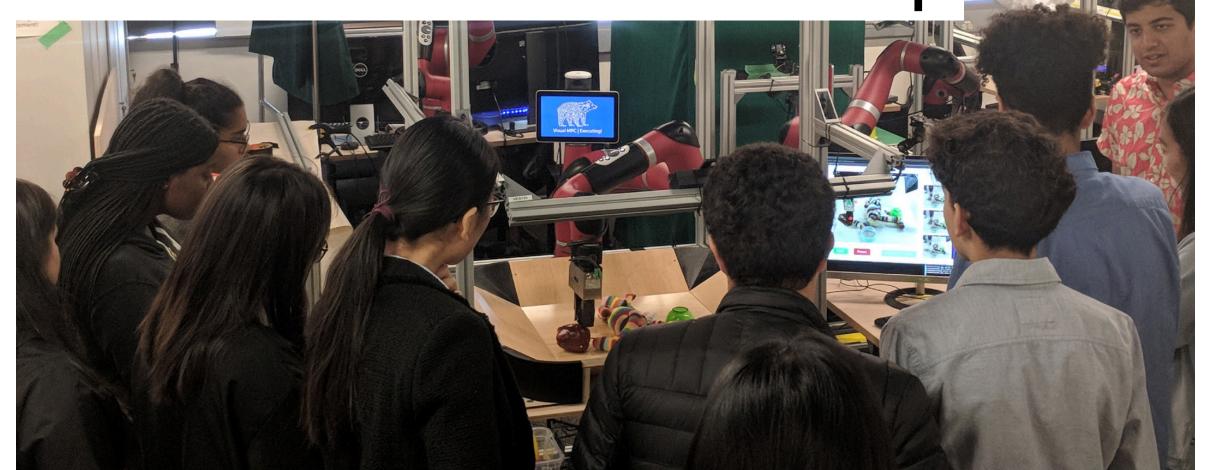


planning with visual models



one-shot imitation

Demo at AI4ALL Outreach Camp



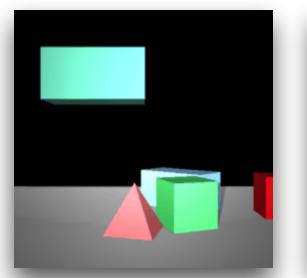
The students were unimpressed.

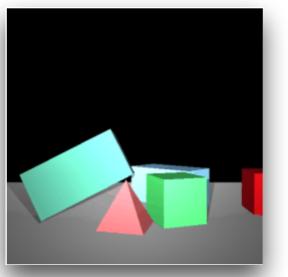
(but still had fun)

Takeaways

Can we build an agent that can do *many tasks*?

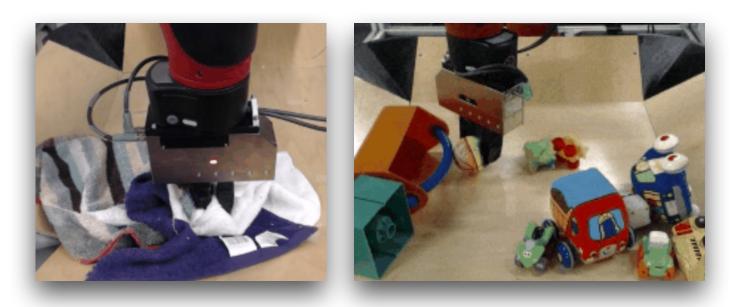
from pixel observations, with limited supervision, in the physical world





+ complex, long-horizon tasks

structured latent space model for long-horizon tasks



modeling diverse, openworld environments

- + significant object diversity
- + minimal supervision

Future work: best of both worlds?

Future work: How can we build better, more useful models of the world?

Can we model **uncertainty** over future observations?

More and more uncertainty over time.

Can we adapt the model with a small amount of experience?

Physical properties unknown until interaction.

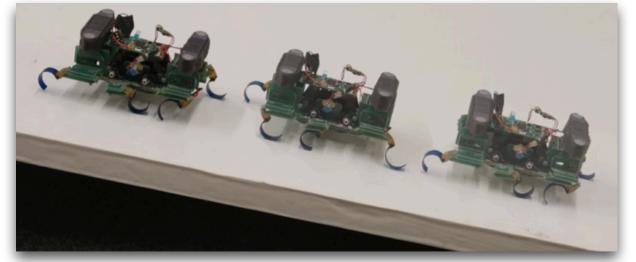
How should we model the reward?

Agents need internal representation of the goal in the real world.

Stochastic adversarial video prediction

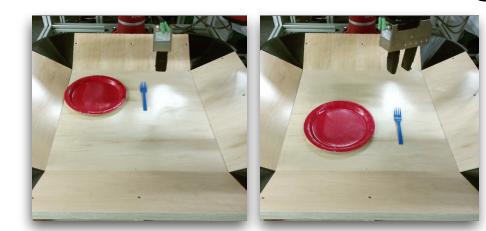
Lee, Zhang, Ebert, Abbeel, Finn, Levine. 2018

Few-shot, online model adaptation



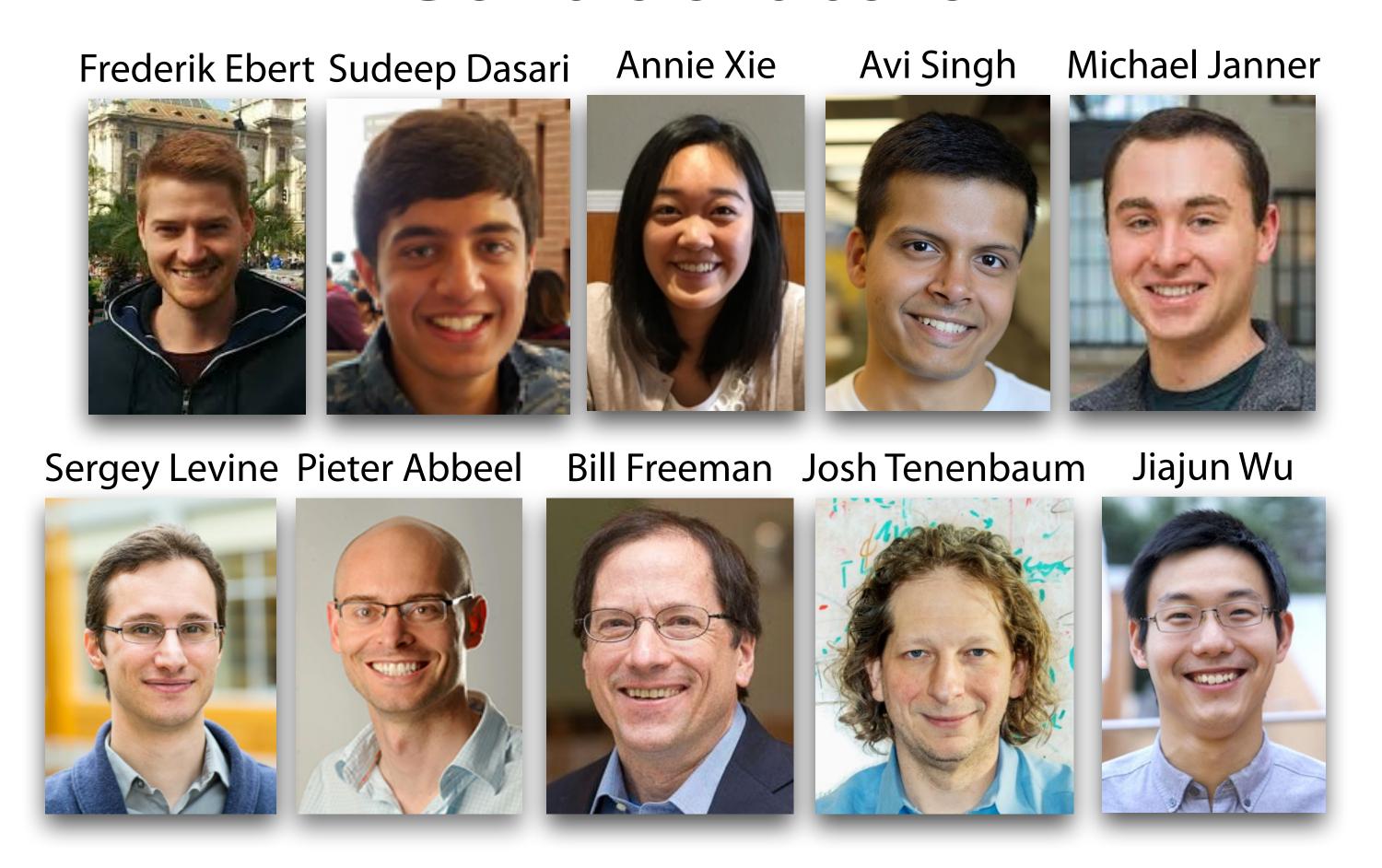
Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. 2018

Goal inference from images



Xie, Singh, Levine, Finn. CoRL 2018

Collaborators



Papers, data, and code linked at: people.eecs.berkeley.edu/~cbfinn

Questions?