On perceptual representations and how they interact with actions and physical representations

Jeannette Bohg - Interactive Perception and Robot Learning Lab - Stanford

Exploiting Multi-Modality

Touch J. J. Gibson (1966) – The Senses considered as a Perceptual System.

Accumulation over Time

Thanks to Octavia Camps at Northeastern University, Boston

Concurrency of Egomotion and Sensing

Held and Hein (1963). Movement-Produced Stimulation in the Development of Visually-Guided Behaviour

Interactive Perception

Sensory Data

Interactive Perception – Leveraging Action in Perception and Perception in Action. Bohg, Hausman, Sankaran, Brock, Kragic, Schaal and Sukhatme. TRO '17.

Predictive Model

Sensory Observations

Modelling Physics

Physics-based Model Predicted Effect

SIGG

Video Credit: Ron Fedkiw@Stanford

Example:

Real motion

More than a Million Ways to Be Pushed. A High-Fidelity Experimental Dataset of Planar Pushing. Yu et al. IROS 2016.

Sensory Observations

Data-Driven models

Learned Predictive Model

Ground Truth

Prediction

Unsupervised Learning for Physical Interaction through Video Prediction. Finn et al. NIPS 2016.

Our Hypothesis Physics Models +

Alina Kloss et al, "Combining learned and analytical models for predicting action effects," 2017. Journal paper submitted to IJRR. Pre-print on arXiv.

Alina Kloss

Hybrid Model

Sensory Observations

End-to-End

Loss on Effect

More than a Million Ways to Be Pushed. A High-Fidelity Experimental Dataset of Planar Pushing. Yu et al. IROS 2016.

K. M. Lynch, H. Maekawa, and K. Tanie, "Manipulation and active sensing by pushing using tactile feedback," in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 1, Jul 1992, pp. 416-421

Compared Architectures

Training: End-to-End **Loss:** Error between Predicted and Ground Truth Effect

Raw Sensory Observations

Generalisation over actions and shapes

Alina Kloss et al, "Combining learned and analytical models for predicting action effects," 2017. Journal paper submitted to IJRR. Pre-print on arXiv.

Improved Data Efficiency

Learn to extract given state representation from raw data

A Concrete Suggestion

Sensory Observations

End-to-End

Loss on Effect

Interpretability

Example:

Real motion

More than a Million Ways to Be Pushed. A High-Fidelity Experimental Dataset of Planar Pushing. Yu et al. IROS 2016.

Compensation for Errors in Analytical Model

Wrong Friction Parameters of Analytical Model

Predictive Model

Sensory Observations

Thomas Baumeister

Predictive Model

Sensory Observations

Poster

Thomas Baumeister

But what if?

Sensory Observations

Vision and Touch are complementary

 $\widehat{\mathsf{Z}}$ Force in z

Insertion Alignment

Multimodal Representation for Manipulation

Reaching

Peg Insertion RGB Images + End Effector F/T

Michelle Lee, Yuke Zhu et al, "Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks" 2018. Submitted to ICRA. Pre-print on arXiv.

Alignment

Insertion

Learning a policy that leverages Vision & Touch Policy

Input

RGB image

Force data

Encoder

Output

End Effector Displacements

Proprioception

Learning a Policy based on this RepresentationInputEncoderPolicyOutput

RGB image

Force data

TRPO

Representation

End Effector Displacements

Ablation Results in Simulation

Generalisation Results in Real World

hexagonal (2.50mm)

semicircular (1.85mm)

square (2.24mm)

triangular (2.13mm)

* Clearances are shown as numbers in pare

semicircular

Each policy is trained with TRPO for 300 episodes (~5 hours) while fixing the multimodal representations.

We demonstrate that the learned representation and policy generalize well to new pegs.

Representation Transfer (92% success rate)

- Representation trained on
- Policy trained on
- Policy evaluated on

Policy Transfer (62% success rate)Representation trained onPolicy trained onPolicy evaluated on

We demonstrate that our policy's robustness against four types of disturbances.

Target Movement

4

Camera Occlusion

External Force

The policy is able to recover from external pushes on the arm.

Haptics Perturbation

The policy is robust towards perturbations to the F/T sensors.

Normalized Force 1.0 0.5 Force 0 -0.5 -1.0 Time

Target Movement

The policy is able to handle small offsets of the position of the hole.

X1 * no object in environment is tracked

Normalized Force

Camera Occlusion

The policy can complete insertion even with intermittent camera occlusion.

Conclusions

Sensory Data

Hybrid Model

Actions

Time

Model-based

Structure

Min Error

Variance

Model Complexity

Thank you for your Attention!

MAX-PLANCK-GESELLSCHAFT

 $L(\mathbf{\hat{v}_o}, \mathbf{\hat{o}}, \mathbf{v_o}, \mathbf{o}) = trans + mag + rot + pos + \lambda \sum_{w} \|w\|$ $trans = \|\hat{\nu}_{\mathbf{o}} - \nu_{\mathbf{o}}\| \quad mag = \|\|\hat{\nu}_{\mathbf{o}} - \nu_{\mathbf{o}}\|\|$ $rot = \frac{180}{\pi} |\omega - \hat{\omega}| \quad pos = ||\mathbf{o} - \hat{\mathbf{o}}||$

Testing Data Efficiency 3530 trans [%] 2520152.5 $\mathbf{5}$ $7.5 \ 10$ $15 \ 20$ 50

--- physics

Testing Data Efficiency 3530 trans [%] 2520152.55 $7.5\ 10$ $15 \ 20$ 50

Testing Data Efficiency

Testing Data Efficiency

— neural _ hybrid _ error _ - physics

Testing Generalization

Alina Kloss et al, "Combining learned and analytical models for predicting action effects," Submitted to IJRR. 2018. Pre-print on arXiv.

New Push Velocities

New Object Shapes

150

Action-Conditional Flow

current frame (with next action)

predicted optical flow

ground-truth optical flow

