On perceptual representations

and how they Interact with actions and physical representations

Jeannette Bohg - Interactive Perception and Robot Learning Lab - Stanford
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Concurrency of Egomotion and Sensing
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Interactive Perception
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Sensory Data Actions Time

Interactive Perception - Leveraging Action in Perception and Perception in Action.
Bohg, Hausman, Sankaran, Brock, Kragic, Schaal and Sukhatme. TRO "17.



Predictive Model
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Example:

BIG difference!

Simulated motion |

(Lynch 1992)

More than a Million Ways to Be Pushed. A High-Fidelity
Experimental Dataset of Planar Pushing. Yu et al. IROS 2016.



Challenges

Predicted Effect



Data-Driven models
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Learned Predictive Model

Ground Truth Prediction

Unsupervised Learning for Physical Interaction
through Video Prediction. Finn et al. NIPS 2016.



Our Hypothesis

hysics Modells +

Example:

BIG difference!

Real motion Simulated motion

(Lynch 1992)

Alina Kloss et al, “Combining learned and analytical models for predicting action effects,” 2017. Journal paper submitted to IJRR. Pre-print on arXiv.






Testing Hypothesis on a Case Study
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More than a Million Ways to Be Pushed. igh—FideIity
Experimental Dataset of Planar Pushing. Yu et al. IROS 2016.



Analytic Model
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K. M. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active sensing by pushing using tactile feedback,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 1, Jul 1992, pp. 416—421



Raw Sensory Observations

Neural Network only Hybrid Model Error Model
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Results

Alina Kloss et al, “Combining learned and analytical models for predicting action effects,”
2017. Journal paper submitted to IJRR. Pre-print on arXiv.
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A Concrete Suggestion
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Example:

BIG difference!

Simulated motion |

(Lynch 1992)

More than a Million Ways to Be Pushed. A High-Fidelity
Experimental Dataset of Planar Pushing. Yu et al. IROS 2016.



Compensation for Errors in Analytical Model

Wrong Friction Parameters of Analytical Model
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(a) Physics (b) Hybrid (¢) Error

(d) Contact points predicted by (e) Contact points predicted by (f) Contact normal predicted by (g) Contact normal predicted by
hybrid error hybrid error



Predictive Model

Sensory Observations

Model Predicted Effect

o> Model-Predictive Control
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Predictive Model

Sensory Observations

Model Predicted Effect

o> Model-Predictive Control
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Vision and Touch are complementary
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Multimodal Representation for Manipulation

Reaching Alignment Insertion

Peg Insertion
RGB Images + End Effector F/T

O @ d A

Michelle Lee, Yuke Zhu et al, “Making Sense of Vision and Touch: Self-Supervised Learning of
Multimodal Representations for Contact-Rich Tasks” 2018. Submitted to ICRA. Pre-print on arXiv.




Learning a policy that Ieverages Vision & Touch

Encoder Output
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Representation Learning

Input Encoders Decoders
L

Action-conditional
robot optical flow
] —
action
—_—

Fusion

RGB image

s UV A NS — S —
AAN AN
v y N/ N X e ot |
vV v | Ay o
r -

O/1
— contact in
the next step?

O0/1
time-aligned?

Force data

Proprioception



Learning a Policy based on this Representation

Input Encoder Policy Output
r 2 TRPO
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Average episode return
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Generalisation Results in Real World
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Each policy Is trained with TRPO for
300 episodes (~5 hours) while fixing

the multimodal representations.



We demonstrate that the learned representation

and policy generalize well to new pegs.



Representation Transfer (92% success rate)

Representation trained on A

Policy trained on

Policy evaluated on

Policy Transfer (62% success rate)
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We demonstrate that our policy’'s robustness

against four types of disturbances.

External Haptics Target Camera

Force Perturbation Movement Occlusion
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Normalized FOrcCe

Haptics Perturbation

The policy is robust towards perturbations I '

to the F/T sensors




Normalized Force

Target Movement
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The policy is able to handle small offsets
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Conclusions
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Bias-Variance Tradeoff
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Thank you for your Attention!
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Detatled Model Architecture
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Testing Data Efficiency
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Testing Data Efficiency
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Testing Data Efficiency
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thousand training examples
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Testing Data Efficiency
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Testing Generalization

New Pushing Angles New Push Velocities New Object Shapes
& Contact Points

Training Testing Training Testing Training Testing
~ \

Exctnapolation

Alina Kloss et al, “Combining learned and analytical models for predicting action effects,” Submitted to IJRR. 2018. Pre-print on arXiv.



Generalization to new push velocities
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Generalization to new push velocities
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Generalization to new push velocities
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Generalization to new push velocities
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Action-Conditional Flow

current frame predicted ground-truth
(with next action) optical flow optical flow

EPE: 0.036

EPE: 0.024




Controller Architecture
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