
On perceptual representations

Jeannette Bohg - Interactive Perception and Robot Learning Lab - Stanford

and how they interact with actions and physical representations 





Exploiting Multi-Modality

J. J. Gibson (1966) - The Senses 
considered as a Perceptual System.
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Accumulation over Time

Thanks to Octavia Camps at Northeastern University, Boston



Concurrency of Egomotion and Sensing

Held and Hein (1963). 
Movement-Produced 
Stimulation in the 
Development of Visually-
Guided Behaviour



Interactive Perception

Interactive Perception - Leveraging Action in Perception and Perception in Action.                                              
Bohg, Hausman, Sankaran, Brock, Kragic, Schaal and Sukhatme. TRO ’17.
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Modelling Physics
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Video Credit: Ron Fedkiw@Stanford



More than a Million Ways to Be Pushed. A High-Fidelity 
Experimental Dataset of Planar Pushing. Yu et al. IROS 2016.  
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Data-Driven models
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Learned Predictive Model

Unsupervised Learning for Physical Interaction 
through Video Prediction. Finn et al. NIPS 2016.  

Ground Truth Prediction



Our Hypothesis
Physics Models + Learning

= Generalization

Alina Kloss

Alina Kloss et al, “Combining learned and analytical models for predicting action effects,” 2017. Journal paper submitted to IJRR. Pre-print on arXiv.
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Testing Hypothesis on a Case Study

More than a Million Ways to Be Pushed. A High-Fidelity 
Experimental Dataset of Planar Pushing. Yu et al. IROS 2016.  
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K. M. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active sensing by pushing using tactile feedback,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 1, Jul 1992, pp. 416–421 
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Results

Improved Data Efficiency

Generalisation over actions and shapes

Alina Kloss et al, “Combining learned and analytical models for predicting action effects,” 
2017. Journal paper submitted to IJRR. Pre-print on arXiv.



Don’t throw away structure



Learn to extract given state 
representation from raw data
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Interpretability



More than a Million Ways to Be Pushed. A High-Fidelity 
Experimental Dataset of Planar Pushing. Yu et al. IROS 2016.  



Compensation for Errors in Analytical Model 
Wrong Friction Parameters of Analytical Model
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Vision and Touch are complementary 

AlignmentReaching

time (ms)

Insertion

Fo
rc

e 
in

 z
 (N

)



1 2 3 4 5 6

1 2

Reaching

3 4

Alignment

5 6

Insertion

Peg Insertion 
RGB Images + End Effector F/T

Multimodal Representation for Manipulation

Michelle Lee, Yuke Zhu et al, “Making Sense of Vision and Touch: Self-Supervised Learning of 
Multimodal Representations for Contact-Rich Tasks” 2018. Submitted to ICRA. Pre-print on arXiv.



Learning a policy that leverages Vision & Touch
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Representation Learning
Encoders
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Learning a Policy based on this Representation
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Ablation Results in Simulation
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Generalisation Results in Real WorldOur model works well with different peg shapes.

round 
(2.15mm)

hexagonal 
(2.50mm)

square 
(2.24mm)

triangular 
(2.13mm)

semicircular 
(1.85mm)

* Clearances are shown as numbers in parentheses.



semicircular

triangular

Each policy is trained with TRPO for 

300 episodes (~5 hours) while fixing 
the multimodal representations.

round x1



We demonstrate that the learned representation 

and policy generalize well to new pegs.



Policy Transfer (62% success rate)

Policy trained on 
Policy evaluated on

Representation trained on

Representation Transfer (92% success rate)
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We demonstrate that our policy’s robustness 

against four types of disturbances.
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External Force

The policy is able to recover from external 

pushes on the arm.
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Haptics Perturbation

The policy is robust towards perturbations  

to the F/T sensors. 

x1



Target Movement

The policy is able to handle small offsets 

of the position of the hole.
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Camera Occlusion
The policy can complete insertion even  

with intermittent camera occlusion.

Agent View

x1
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Conclusions
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Bias-Variance Tradeoff 
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Thank you for your Attention!



Detailed Model Architecture
Learned 
Model

Physics-based 
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Testing Data Efficiency



Testing Data Efficiency



Testing Data Efficiency



Testing Data Efficiency



Testing Generalization 

New Pushing Angles  
& Contact Points

Training Testing

New Push Velocities

Training Testing

New Object Shapes

Training Testing

Interpolation Extrapolation

Alina Kloss et al, “Combining learned and analytical models for predicting action effects,” Submitted to IJRR. 2018. Pre-print on arXiv.



Training Testing

Generalization to new push velocities

Extrapolation



Training Testing

Generalization to new push velocities

Extrapolation



Training Testing

Generalization to new push velocities

Extrapolation



Training Testing

Generalization to new push velocities

Extrapolation



Action-Conditional Flow
current frame

(with next action)
ground-truth
optical flow

predicted
optical flow

[-0.05  
0.05 -0.05]

EPE: 0.036

[-0.0267943 
-0.05  -0.05 
]

EPE: 0.024

[ 1.79170e-03  
2.48199e-05 
-3.08620e-02]



Controller Architecture
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