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How do you understand a scene?

1. Parse it into physical objects and relations
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How do you understand a scene?

1. Parse it into physical objects and relations

2. Reason about the objects and their interactions




How do you understand a scene?

1. Parse it into physical objects and relations
2. Reason about the objects and their interactions "Precarious"

ST s e
LSS
4\




.'(_A_{»

"Infinite use of finite means"

- von Humboldt, on the productivity of language

"Precarious"
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The
Nature of
Explanation

KENNETH
CRAIK

Kenneth Craik, “The Nature of Explanation”, 1943:

'If the organism carries a 'small-scale model’ of external reality
and of its own possible actions within its head, it is able to try
out various alternatives, conclude which is the best of them,
react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future,
and in every way to react in a much fuller, safer, and more
competent manner to the emergencies which face it." (pg 61)

"This concept of 'thinghood' is of fundamental importance for any
theory of thought." (pg 77)

Q DeepMind



Claim: Human intelligence is structured

Founded on objects, relations, reasoning

Objects and relations reflect decisions made by evolution, experience, and task demands
about how to represent the world in an efficient and useful way

Structure in our core cognitive knowledge evident very early in infancy (Spelke)
Model-building over recognizing patterns (Tenenbaum)

Combinatorial generalization via compositionality ("infinite use of finite means”)

Q DeepMind



What is the mechanism of human intuitive physics?

Intuitive Physics Engine: the "physics engine in the head"

1. Inputs =——— 2 Intumve Physics Engme = 3. Outputs

2,
N Will it fall’

Battaglia, Hamrick, Tenenbaum, 2013, PNAS
‘Q DeepMind



Experiments: What will happen? Why?

Wil it fall? In which direction?

TRAINING
smaining: 14

Complex scenes Infer the mass

Hamrick et al., 2016

Different masses
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Message from cognition:

Humans use richly structured representations of objects and relations to
reason about, and interact with, their everyday environment.

) DeepMind



Message from cognition:

Humans use richly structured representations of objects and relations to
reason about, and interact with, their everyday environment.

What insights does humans’ structured intelligence offer Al?

Q DeepMind



A graph is a natural way to represent entities and their relations:

* “Nodes" correspond to entities, objects, events, etc.
 "Edges" correspond to their relations, interactions, transitions, etc.
* |nferences about entities and relations respect the graphical structure.

Graphs can capture data from many complex systems:

 Physical systems e Search trees

* Scene graphs  Communication networks
e Social networks e Transportation networks
* Linguistic structure * (Chemical structure
 Programs * Phylogenetic trees

We need better object- and relation-centric models in Al

Q DeepMind



Intuitive physics as reasoning about graphs

2. Intuitive Physics Engme —

Scene (t)—) Scene (t+1) el = | Scene (t+n) |

@ DeepMind



Intuitive physics as reasoning about graphs

Relational reasoning Object reasoning
R v. Objects, \ ¢ — Effects ) Predictions, ‘9.
relations /| | A \ inferences

Compute interaction Apply object dynamics

Q DeepMind



Interaction Network

Relational reasoning Object reasoning
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Compute interaction Apply object dynamics

Predictions, T\ ‘
iInferences

Strong relational inductive bias: Deep learning architecture which operates on graphs

Related to the broad family of "Graph Neural Networks" (Scarselli et al, 2009; Li et al, 2015)
and "Message-Passing Neural Networks" (Gilmer et al., 2017).
Chang et al. (2016) also proposed a similar version in parallel.

Battaglia et al., 2016, NeurlPS
) DeepMind



Interaction Network

Relational reasoning Object reasoning
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Compute interaction Apply object dynamics

Objects,
relations

Predictions,
Inferences
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Object model
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Interaction Network

Can learn a general-purpose physics engine, simulating future states from initial ones

n-body Balls String

g\g
Gravitational forces Rigid collisions between Springs and rigid collisions
walls and balls

Battaglia et al., 2016, NeurlPS
Q DeepMind



1000-step rollouts from 1-step supervised training
n-body Balls String

True

Model

Battaglia et al., 2016, NeurlPS
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True

Model

Zero-shot generalization to larger systems
n-body Balls

Battaglia et al., 2016, NeurlPS
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Zero-shot generalization to larger systems
n-body Balls
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Interaction Network for system-level predictions

A "global model” can be added, which aggregates the per-object outputs to make predictions.

. Relation
Rel E
)5 T (£)
Objects ( V') Object \ J
del
moce Global model Global
MLP ( /) predictions

Can be trained to predict potential energy of a system, outperforming MLP baselines

Battaglia et al., 2016, NeurlPS
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Relation Network

Remove “object model” and predict global outputs only using “relation model™’s output

. Relation
Relat E
Objects ( V) Rt j
*“"“ Global model | Global
’ - MLP (/) predictions

Raposo et al., 2017, ICLR workshop;
Santoro et al., 2017, NeurlPS
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Relation Networks can infer relations in dot motion

Trained on mass-spring systems

Input Model True

Late

Santoro et al., 2017, NeurlPS
Q DeepMind



Relation Networks can infer relations in dot motion

Trained on mass-spring systems

Input Model True

Late

Santoro et al., 2017, NeurlPS
Q DeepMind



Relation Networks can infer relations in dot motion

Trained on mass-spring systems

Input Model True

Late

Santoro et al., 2017, NeurlPS
Q DeepMind



Relation Networks can infer relations in dot motion

Trained on mass-spring systems

Input Model True

Late

Generalizes to point-light walkers

Santoro et al., 2017, NeurlPS
Q DeepMind



"Visual interaction network"

An interaction network augmented with a learnable perception system

1. Inputs =—— 2 Intumve Physics Engine ===

Scene (t )—) Sene (t+1 ) - - - | Scene (t+n) |

'Q DeepMind



"Visual interaction network"

Multi-frame encoder (conv net-based) Interaction network
X,Y Coordinates —
Channels
1 O .
“of 2 = -B
O
e’
Input Frames  2-Scale Pooling Output
Convolution Convolution State Code

Watters et al., 2017, NeurlPS
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"Visual interaction network"

Mass-springs Bouncing balls

True Model True Model

Can even predict invisible objects, inferred from how they affect visible ones

Watters et al., 2017, NeurlPS
'Q DeepMind
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Learning to simulate more complex robotic systems

Alvaro Sanchez-Gonzalez, Nicolas Heess, Tobi Springenberg,
Josh Merel, Martin Riedmiller, Raia Hadsell, Peter Battaglia
ICML, 2018

— 2. Intumve Physics Engme —
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Systems: "DeepMind Control Suite” (Mujoco) & real JACO

Random Control System Trajectories

. 1

/
’
Pendulum Cartpole Acrobot Swimmer6

J

e

Cheetah Walker2d

JACO Arm

DeepMind Control Suite (Tassa et al., 2018)
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Systems: "DeepMind Control Suite” (Mujoco) & real JACO
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Kinematic tree of the actuated system as a graph

Representing physical system as a graph:

e Bodies @ Nodes
 Joints — Edges

* Global properties

Similar representation to:

* |nteraction Networks (Battaglia et al. 2016)

* NerveNet (Wang et al. 2018) (graph-structured policy, rather than model)

Q DeepMind



Graph Network (GN)

Battaglia et al., 2018
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Forward model: supervised, 1-step training w/ random control inputs
@ Input graph (t) Next graph (t+1)

Prediction Fixed Swimmerb

suollolpaid deis-gQ| pauleyn

Expected Predicted
Sanchez-Gonzalez et al., 2018, ICML
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Results: Graph Net (GN) vs MLP forward models

. 1.2 Best MLP [ .
g 10 = = = = = — baseling g Random
v v train data
@ @
= 0.6 =
O O Random
_ 0.4 - 05 5 2.9 valid data
¢ 0.2 l o i ]
0.0 N o 0.0 DDPG agent
+ L O
g 3 9 % &® 8 gest MLP gest GN test data
S5 £ o g 0o o < .
S < O c 2 =X 7 Swimmer6
5 S < 50 2
Q
o 3
More repeated structure: Better test generalization,
Better performance over MLP within and outside of the

training distribution

Sanchez-Gonzalez et al., 2018, ICML Q) DeepMind



GN forward model: Multiple systems & zero-shot generalization

Prediction Fixed Multiple Systems (with Cheetah)
(Pendulum)

Single model trained:
 Pendulum, Cartpole, Acrobot,

Swimmer6 & Cheetah / /

Expected Predicted
- | Prediction Fixed SwimmerN (zero—shot prediction)
Zero-shot generalization: Swimmer (Swimmer7)
 #traininglinks: {3, 4,5,6,-,8,9, -, -, ...}

* #testinglinks: {-, -, -, -, 7, -, -, 10-14} /\ /\

Expected Predicted

Sanchez-Gonzalez et al., 2018, ICML
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GN forward model: Real JACO data

(T =7~
Recurrent graph network .
(e e

(Real JACO trajectories, rendered using Mujoco)

Prediction Fixed Real JACO

Expected Predicted
Sanchez-Gonzalez et al., 2018, ICML




GN forward model: Real JACO data

(T =7~
Recurrent graph network .
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Prediction Fixed Real JACO
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System identification: GN-based inference, under diagnostic control inputs

Observed Inferred
dynamic ID phase  abstract
sequence static graph

Unobserved system parameters (e.g. mass, length) are implicitly inferred

Prediction System ID Cartpole
ID phase

Real time Slowed down 1/5
Sanchez-Gonzalez et al., 2018, ICML
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Using learned models for control

— 2. Intuutlve Physics Engine === 3 Outputs

0
#’“ Will it fall’s
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Control: Model-based planning

Trajectory optimization: the GN-based forward model is differentiable, so we can
backpropagate through it, and find a sequence of actions that maximize reward

Control Fixed JACO
Imitate, full pose (1x)

Target pose Control trajectory

Sanchez-Gonzalez et al., 2018, ICML Q DeepMind
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Control: Multiple systems via a single model

Control Fixed Multiple Systems

!

Pendulum | Acrobot Cartpole
Balance (3x) Swing up (5x) Balance (3x)

(

Swimmer6 Cheetah
Move towards target (7x) Move forward (5x)

Sanchez-Gonzalez et al., 2018, ICML
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Control: Zero-shot control

Control Fixed SwimmerN (zero—shot)
Move towards target (5x) 1

Swimmerd Swimmer4 SwimmerS Swimmerb Swimmer/ Swimmers8

(zero—shot) (zero—shot) (zero—shot) (zero—shot) (zero—shot)

Swimmer9 SwimmerilQ Swimmertl 1 Swimmer1l2 Swimmer1l3 Swimmer1l4

Sanchez-Gonzalez et al., 2018, ICML ‘Q DeepMind
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Control: Multiple reward functions

Control Fixed Cheetah (k rewards)
Maximize target (3x)

T

Horizontal speed Vertical position

Y &<

Squared vertical speed Squared angular speed

Sanchez-Gonzalez et al., 2018, ICML

Control Fixed Walker2d (k rewards)

Maximize target (1x)

L

Horizontal speed

L

Inverse verticality

Vertical position

Feet to head height
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Learning to use mental simulation

— 2. Intuutlve Physics Engine === 3 Outputs

0
#’“ Will it fall’s
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Learning to use mental simulation
"Imagination-based metacontroller”

"Spaceship task":

 Navigate to your home planet by choosing a force vector
* Challenging because the planets exert gravity

The agent learns 3 components:

1. Action policy (via stochastic value gradients (Heess et al.
2015))

2. GN-based forward model (via supervised 1-step training)

3. Internal strategy for using imagination to test potential
actions before selecting one to execute (via REINFORCE)

Hamrick et al., 2017, ICLR
Q DeepMind
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Learning to use mental simulation
"Imagination-based planner™

# 55.L0.041. C 0.026. T 0.067 # 27.L0.095.C0.414. T 0.509

® Red: real actions
e Blue: 1 step of imagination

® Green: 2+ steps of imagination Pascanu et al.. 2017. arXiv

Q DeepMind
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Graph-structured model-free policies

wwwm=_ 2. Intuitive Physics Engine === 3. Outputs

0
M Will it fall’s
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Graph-structured model-free policies
for physical construction in humans and Al

Gluing Phase Gravity Phase
+1pt

No Glue

-

Stimulus

Partial Glue

I_ .

Optimal Glue

Jess Hamrick, Kelsey Allen,
Victor Bapst, Tina Zhu, Kevin McKee,
Josh Tenenbaum, Peter Battaglia
Proc Cog Sci, 2018

The "glue task”

Goal: Glue blocks together to make the tower
stable, using the minimum amount of glue.

Hamrick et al., 2018, Proc Cog Sci Q DeepMind



e)
to select it.

floor) to glue them together.

at doesn't fall.
ed costs 1pt.
o keep the tower stable,

r each tower.

Structured model-free policies
for physical construction in humans and Al

Instructions (press 'h' to show/hide)
. Click on a block (or the floor) to select it.
. Click on another block (or the floor) to glue them together.
. Press enter to apply gravity to the tower.
. You earn 1pt for each block that doesn't fall.
. Each pair of blocks that is glued costs 1pt.
. If you use the minimum glue to keep the tower stable,
you earn a 10pt bonus.
. At least one glue is needed for each tower.

Hamrick et al., 2018, Proc Cog Sci
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Structured model-free policies
for physical construction in humans and Al

Hamrick et al., 2018, Proc Cog Sci Q DeepMind



Structured model-free policies
for physical construction in humans and Al

No Glue

MLP GN-FC GN 23456 78 910
# Blocks

Hamrick et al., 2018, Proc Cog Sci Q DeepMind



Graph-structured representations for model-free RL

1. Inputs == 2, Intumve Physics Engme = 3. Outputs

2,
'-i“ Will it fall?

Scene()—) Scene (t+1) - -) Scene (t+n) |
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Relational deep reinforcement learning

Box-World
Agent Key Lock

Loose
key

Gem

Box-World:

* Acquire gem (white) by
opening a sequence of
locked boxes

 Model-free (A2C) with
self-attention/GN state
representation, and
message-passing

Observation Underlying graph
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-
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Q@
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Zambaldi et al., 2018, arXiv/under review

Fraction solved

Fraction solved

1.0

0.8-

0.6-

0.4-

0.2-

0.0

0

1.0-

0.8

0.6

0.4

0.2-

0.0

—

— Relational (1 block)
— Relational (2 blocks)
— Baseline (3 blocks)
— Baseline (6 blocks)

2 4 6 8 10 12 14
Environment steps 1e8

—— Relational (2 block)
— Relational (4 blocks)

1 2 3 4 5 o6 7 8
Environment steps 1e8
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Attention
head 1

Attention
head 2

Visualizing the learned representations

Underlying graph

12

Highest attention values per head

Entity 1 Entity 2 Entity 3 Entity 4 Entity 5

1. Keys <—> locks they can open

2. Avatar <—> keys

Zambaldi et al., 2018, arXiv/under review Q DeepMind



Generalization to longer solutions and withheld keys

Fraction solved

Longer solution path lengths

0.8 -
0.6 -
0.4 -
0.2 -

0.0

Relational

e

Zambaldi et al., 2018, arXiv/under review

Baseline

Fraction solved

Withheld key

N
~

=

.

1.0 ~
0.8
0.6
0.4
0.2

Not required
during training

Baseline

Relational

0.0
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Scales up to StarCraft Il mini-games

Collect Mineral Shards Build Marines

" 2]
‘T‘?' KU 4y I
@&/ / .
et Buildings
o A RN Sy
' "
v ia iy v .
s Y /o e
3 fs2 )
J - “ 4
4‘;. ‘_«,’f e ‘ = x -
i ST 5 \ 4 v - v
N . & i PA I \ ‘ ¥

Mmerals -

/*,

Minerals

o State-of-the-art in 6 of 7 StarCraft Il mini-games

 Beats grandmaster-level in 4 of 7

Zambaldi et al., 2018, arXiv/under review Q DeepMind



Structured models in multi-agent RL
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Relational forward models for multi-agent RL

Stag hunt

Step 0 with last actions

Forward prediction performance

CoopNav CoinGame StagHunt

17.0 - 3.20 - 5.20 -
n
2 13.6- = 2.56- 4.16 -
(0p)]
*GEJ 10.2 1.92 - 3.12 - |
£ 6.8- 1.28 - 2.08 - ]
o I ,
LLl

0.0 - 0.00 - 0.00 -

B RFM 1 NRI B VAIN I Feedforward [ 1 No-relation 1 MLP+LSTM

Tacchetti et al., 2018, arXiv/under review Q DeepMind
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Interpretable learned representations

Magnitude of edge/“message” vector is meaningful

Predicted actions and top 5 edges

-
o

Edge from stag to agent
N
|
N
N

I T T i T T i I T | T T
-5 -3 -1 1 3 On Off -5 -3 -1 1 3
Time until stag respawns Time until stag eaten

Stag Respawn

W

N

Edge from teammate to agent

Before After

# of available apples

Tacchetti et al., 2018, arXiv/under review Q DeepMind
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Agents learn faster with model-augmented observations

1. Train a set of agents to perform each game.
2. Train an RFM to predict future actions.

3. Train a new agent, whose observations are augmented with
message magnitudes (crude “theory of mind”?).

The new agent (blue curve) trains faster in all environments.

CoopNav StagHunt StagHunt - 4 players CoinGame
30 35 35 25
25 30 30 50
25 - 25 |
20
¥ 15 20 20 15
= 15 15 10
a 10
RFM + A2C 10 10 -
5 —— A2C 5 >
0 0 0 0
... T T ... T T T ... T T T
0 1 2 3 0 1 2 3 0 1 2 3 0 20 40 60 80

Environment Steps [M]

Tacchetti et al., 2018, arXiv/under review ‘Q DeepMind



Conclusions

Human use richly structured generative knowledge

 Combinatorial generalization: “Infinite use of finite means”
* (Object- and relation-centric representations
e Structured mental simulation
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Conclusions

Human use richly structured generative knowledge

 Combinatorial generalization: “Infinite use of finite means”
* (Object- and relation-centric representations
e Structured mental simulation

Graph Networks: strong relational inductive bias

* Naturally support combinatorial generalization via compositional sharing
* Graph-structured representations and policies
 (Open-source library: github.com/deepmind/graph_nets (with demos, including physics!)

Q DeepMind


https://github.com/deepmind/graph_nets

Reject false choices

* Nature wvs Nurture e Symbolic vs Connectionist
e Structure vs Flexibility * Hand-engineered vs End-to-end

) DeepMind



Reject false choices

* Nature and Nurture « Symbolic and Connectionist
 Structure and Flexibility * Hand-engineered and End-to-end

The “bias versus variance trade-off” is real —
however the emphasis shouldn’t be on “versus”, but rather on “trade-off”.
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Reject false choices

* Nature and Nurture « Symbolic and Connectionist
 Structure and Flexibility * Hand-engineered and End-to-end

The “bias versus variance trade-off” is real —
however the emphasis shouldn’t be on “versus”, but rather on “trade-off”.

Biology doesn’t choose between nature versus nurture. It uses nature and nurture jointly, to
build wholes which are greater than the sums of their parts.

There’s great promise in synthesizing new techniques by drawing on the full Al toolkit and

marrying the best approaches from today with those which were essential during times when
data and computation were at a premium.

Q DeepMind



Key collaborators

Jess Hamrick Kelsey Allen

Josh Tenenbaum Alvaro Sanchez
Chris Bates Victor Bapst
Razvan Pascanu Vinicius Zambaldi
Nick Watters David Raposo
Daniel Zoran Adam Santoro
Theo Weber Mateusz Malinowski
Andy Ballard Andrea Tacchettl
Nicholas Heess Francis Song
Yujia Li

Oriol Vinyals

i i . i
\a fRT {8
f ; | \ ."{ e, T ——
N A Y | Qi :
e A - . Y 3
. ’.. - ,‘:.' : \\‘ .
5 - { N :
iy 1 B o }
. e . :
: . -
\ j ‘\._-
7 * N 4 :

! B
—_—

'.

.t
A
. i ' R
N - P ‘
LA . v e .
R ¢
g L - ) -~
L , 2 s
. » ¢
P : ) ’ y il o ¢ e o
S ! By ¢« N . . .
A :
.-: : L p . | N o 1B % - “ .
b . b
< - ..... : o B y
' . .
+ B . ‘\
. . . .. . N
r ) od S o oS 0 *» & .0 »
3 -
- L )
» |
" LR | !
- "o »
.
.
\
v

‘Q DeepMind



Key collaborators

Jess Hamrick Kelsey Allen

Josh Tenenbaum Alvaro Sanchez
Chris Bates Victor Bapst
Razvan Pascanu Vinicius Zambaldi
Nick Watters David Raposo
Daniel Zoran Adam Santoro
Theo Weber Mateusz Malinowski
Andy Ballard Andrea Tacchettl
Nicholas Heess Francis Song
Yujia Li

Oriol Vinyals

i i . i
\a fRT {8
f ; | \ ."{ e, T ——
N A Y | Qi :
e A - . Y 3
. ’.. - ,‘:.' : \\‘ .
5 - { N :
iy 1 B o }
. e . :
: . -
\ j ‘\._-
7 * N 4 :

! B
—_—

'.

.t
A
. i ' R
N - P ‘
LA . v e .
R ¢
g L - ) -~
L , 2 s
. » ¢
P : ) ’ y il o ¢ e o
S ! By ¢« N . . .
A :
.-: : L p . | N o 1B % - “ .
b . b
< - ..... : o B y
' . .
+ B . ‘\
. . . .. . N
r ) od S o oS 0 *» & .0 »
3 -
- L )
» |
" LR | !
- "o »
.
.
\
v

‘Q DeepMind



References

Battaglia et al., 2013, PNAS

Hamrick et al., 2016, Cognition

Bates et al., 2015, Proc Cog Sci
Battaglia et al., 2016, NeurlPS

Watters et al., 2017, NeurlPS

Raposo et al., 2017, ICLR workshop
Santoro et al., 2017, NeurlPS
Sanchez-Gonzalez et al., 2018, ICML
Hamrick et al., 2017, ICLR

Pascanu et al., 2017, arXiv

Hamrick et al., 2018, Proc Cog Sci
Zambaldi et al., 2018, arXiv/under review
Tacchetti et al., 2018, arXiv/under review
Battaglia et al. 2018 arXiv

‘Q DeepMind


http://www.pnas.org/content/110/45/18327.long
http://www.jesshamrick.com/publications/pdf/Hamrick2016-Inferring_Mass_In_Complex_Scenes.pdf
https://www.researchgate.net/profile/Christopher_Bates7/publication/276204445_Humans_predict_liquid_dynamics_using_probabilistic_simulation/links/557472b508aeb6d8c0194345.pdf
http://papers.nips.cc/paper/6418-interaction-networks-for-learning-about-objects-relations-and-physics.pdf
http://papers.nips.cc/paper/7040-visual-interaction-networks.pdf
https://arxiv.org/pdf/1702.05068.pdf
https://papers.nips.cc/paper/7082-a-simple-neural-network-module-for-relational-reasoning.pdf
https://arxiv.org/pdf/1806.01242.pdf
https://arxiv.org/pdf/1705.02670
https://arxiv.org/pdf/1707.06170
https://arxiv.org/pdf/1806.01203.pdf
https://arxiv.org/pdf/1806.01830.pdf
https://arxiv.org/pdf/1809.11044.pdf
https://arxiv.org/pdf/1806.01261.pdf

