Structure in physical intelligence

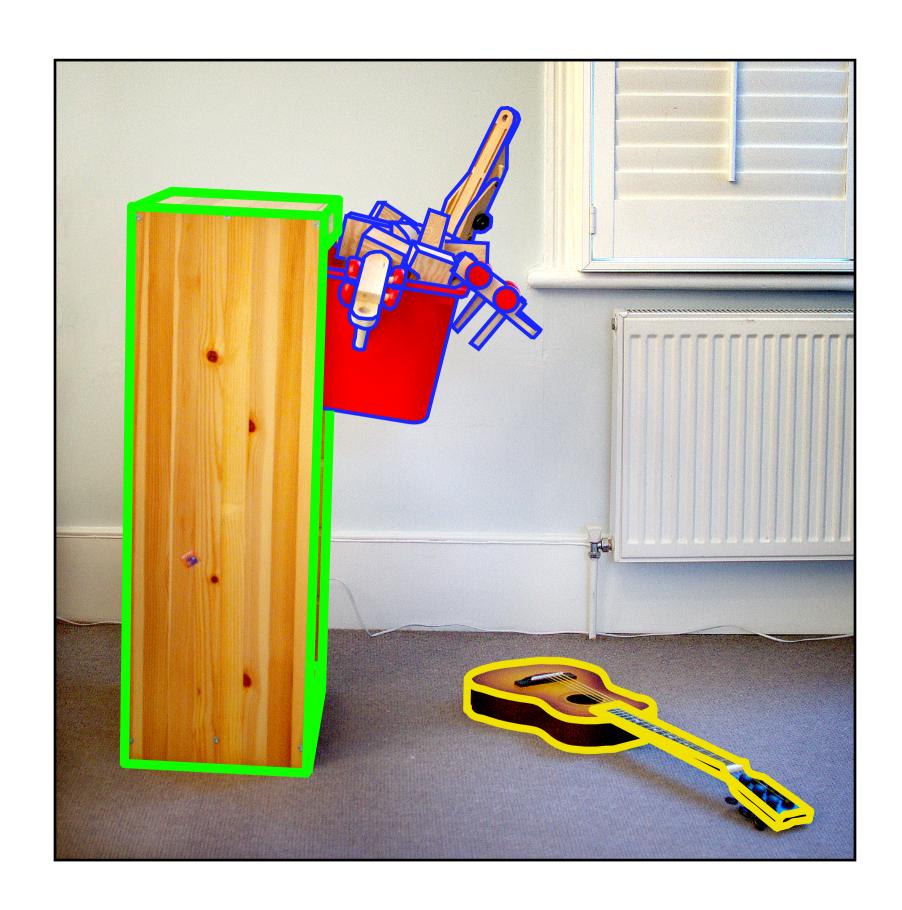
Peter Battaglia

NeurIPS 2018 Workshop:

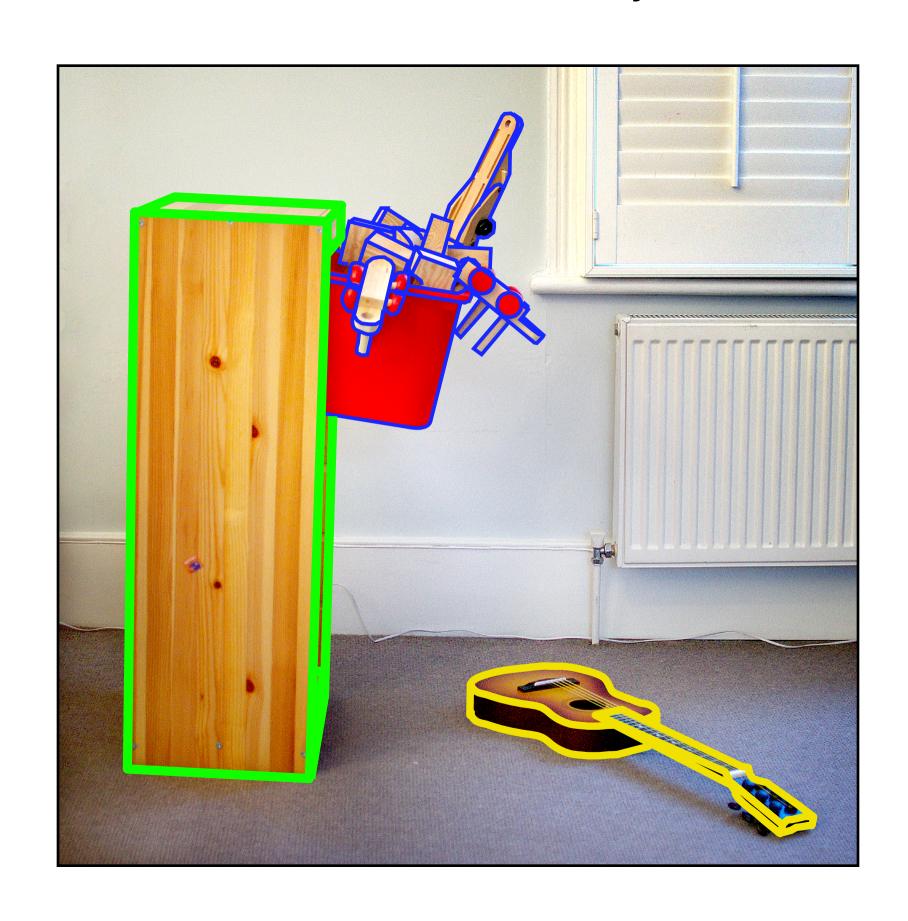
"Modeling the Physical World: Perception, Learning, and Control"

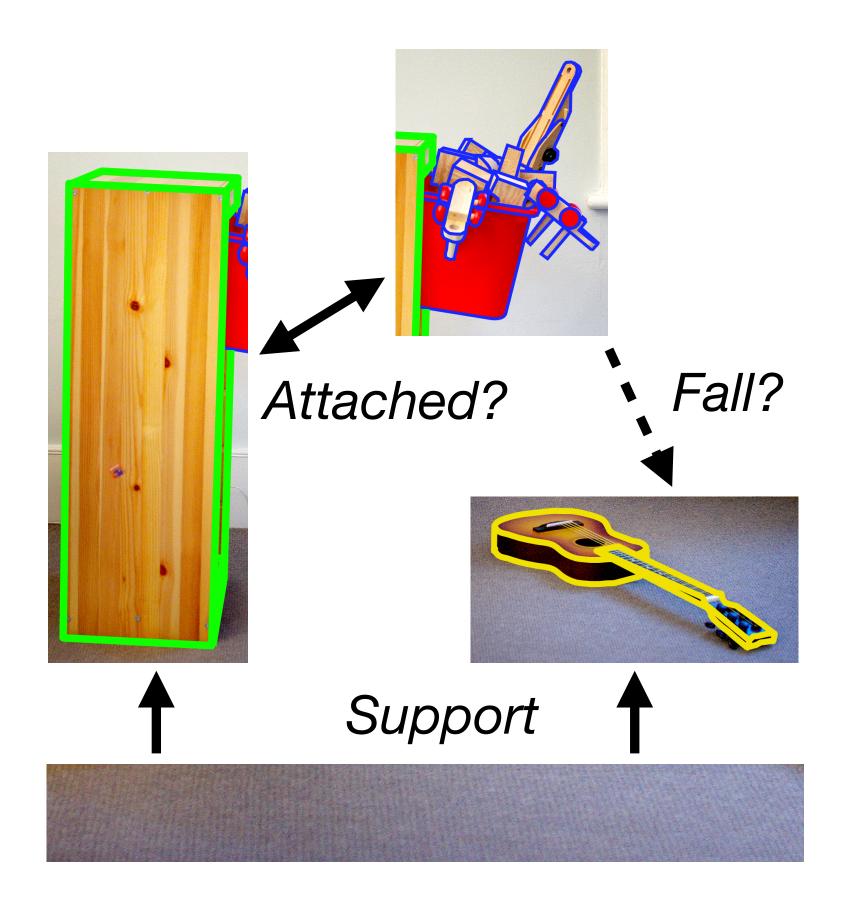
Montreal - December 7, 2018

1. Parse it into physical objects and relations

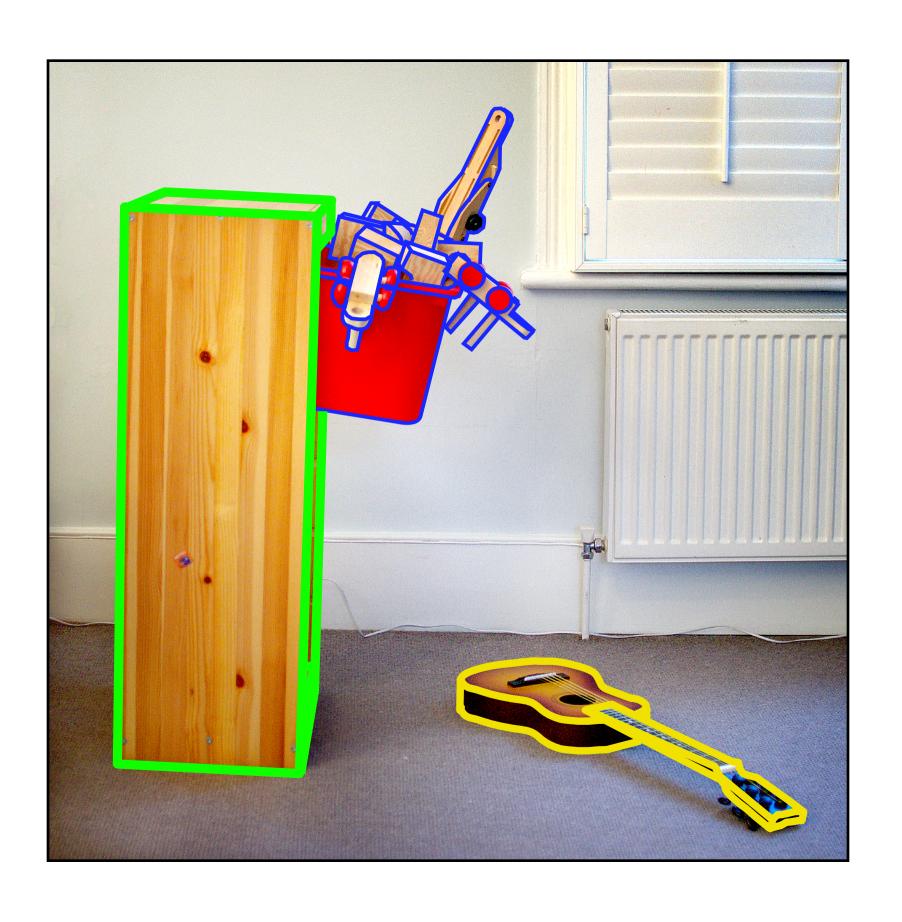


- 1. Parse it into physical objects and relations
- 2. Reason about the objects and their interactions

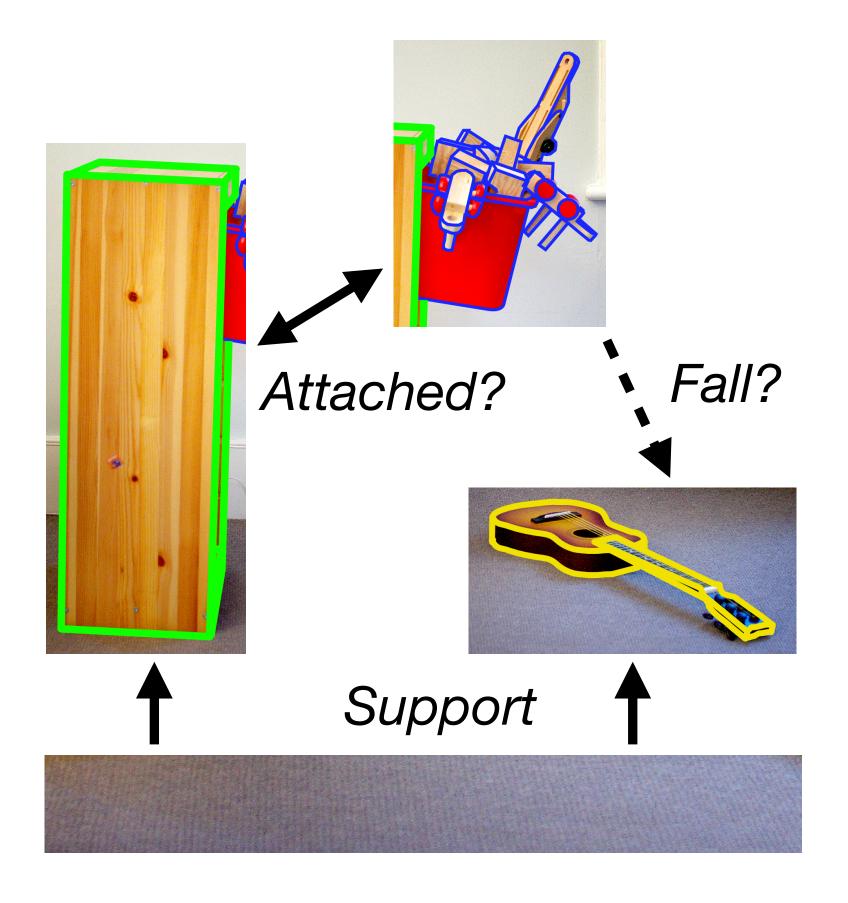




- 1. Parse it into physical objects and relations
- 2. Reason about the objects and their interactions

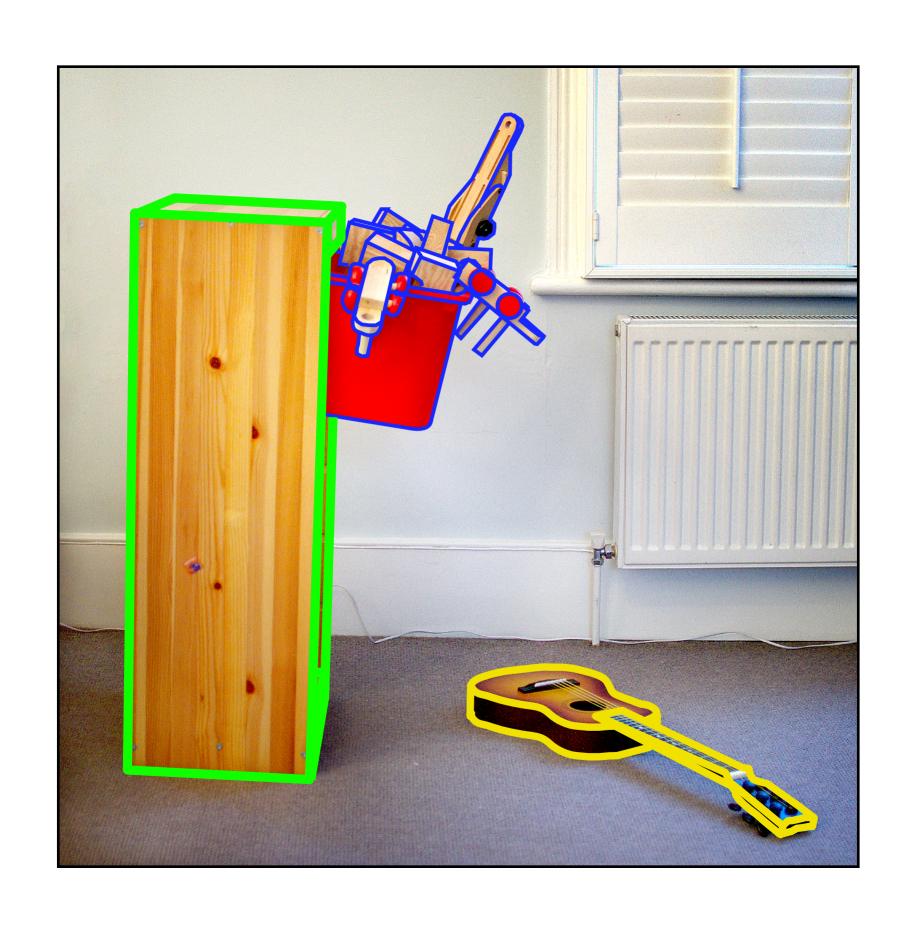


"Precarious"

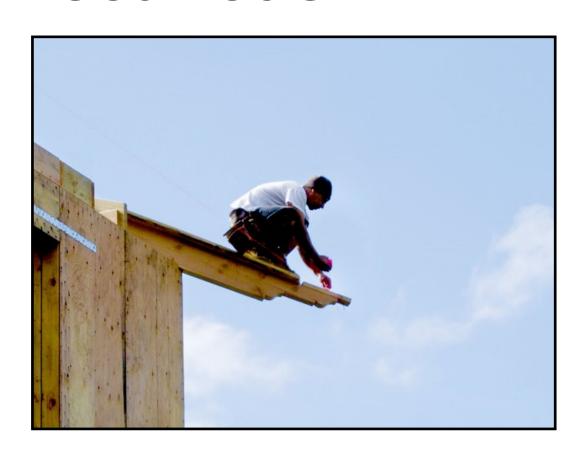


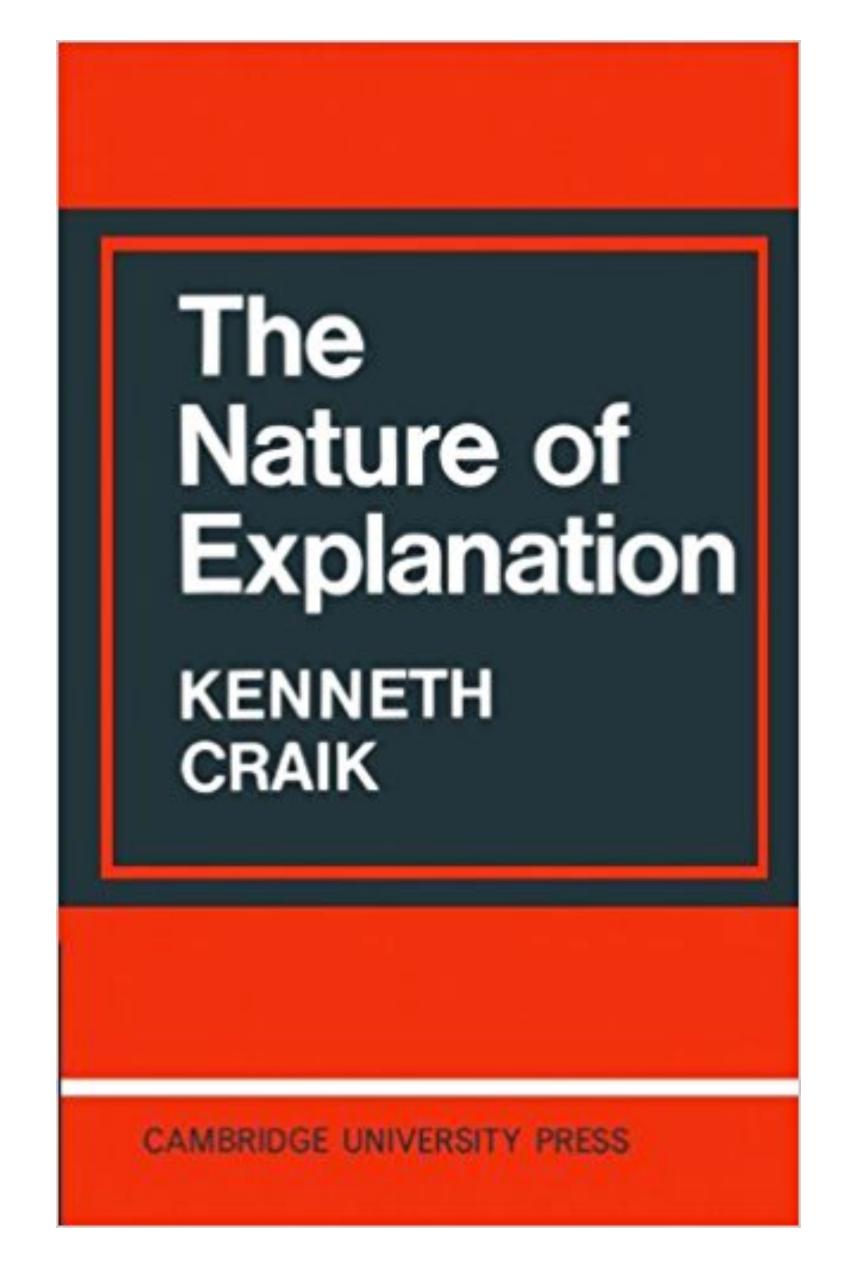
"Infinite use of finite means"

- von Humboldt, on the productivity of language



"Precarious"





Kenneth Craik, "The Nature of Explanation", 1943:

"If the organism carries a 'small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it." (pg 61)

"This concept of 'thinghood' is of fundamental importance for any theory of thought." (pg 77)

DeepMind

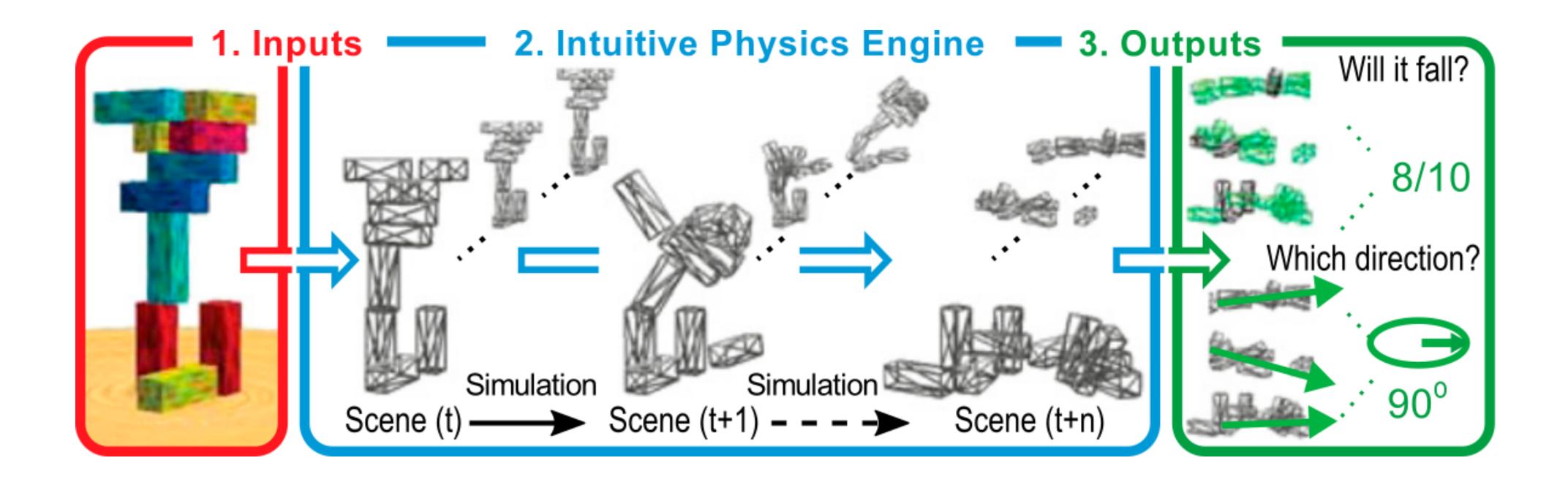
Claim: Human intelligence is structured

Founded on objects, relations, reasoning

- Objects and relations reflect decisions made by evolution, experience, and task demands about how to represent the world in an efficient and useful way
- Structure in our core cognitive knowledge evident very early in infancy (Spelke)
- Model-building over recognizing patterns (Tenenbaum)
- Combinatorial generalization via compositionality ("infinite use of finite means")

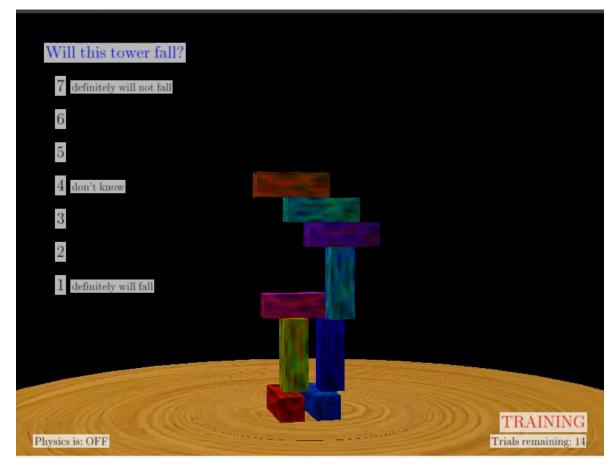
What is the mechanism of human intuitive physics?

Intuitive Physics Engine: the "physics engine in the head"

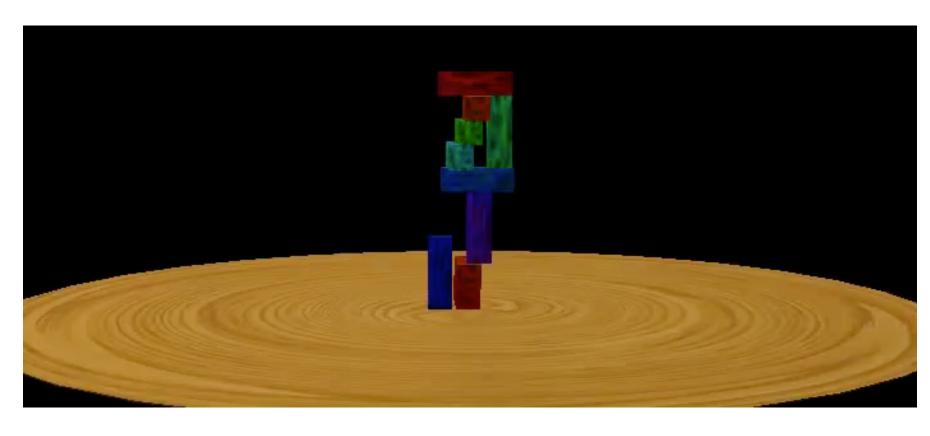


Experiments: What will happen? Why?

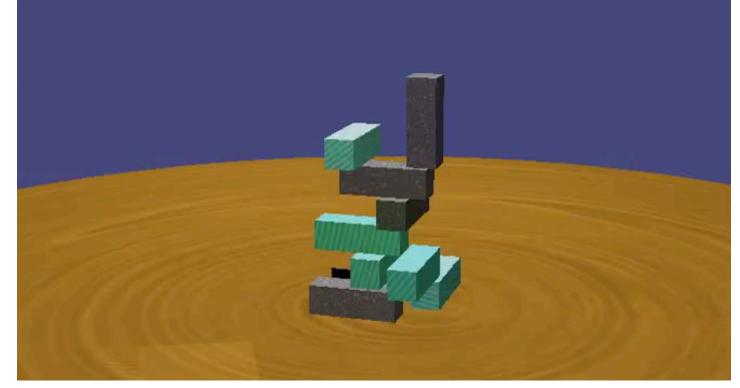
Will it fall?



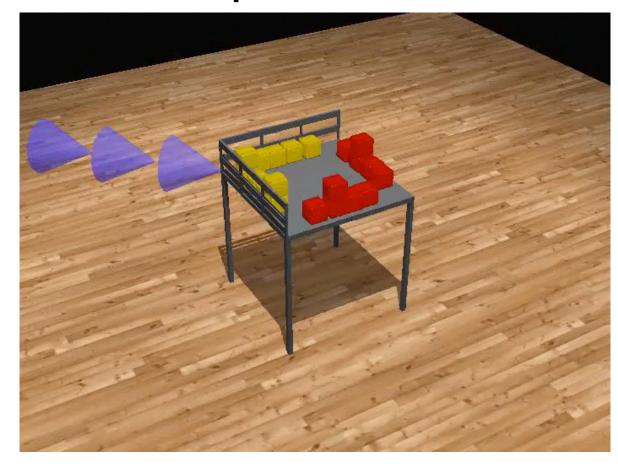
In which direction?



Different masses



Complex scenes



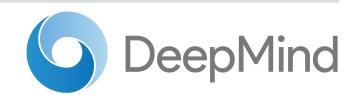
Battaglia et al., 2013

Infer the mass

Hamrick et al., 2016

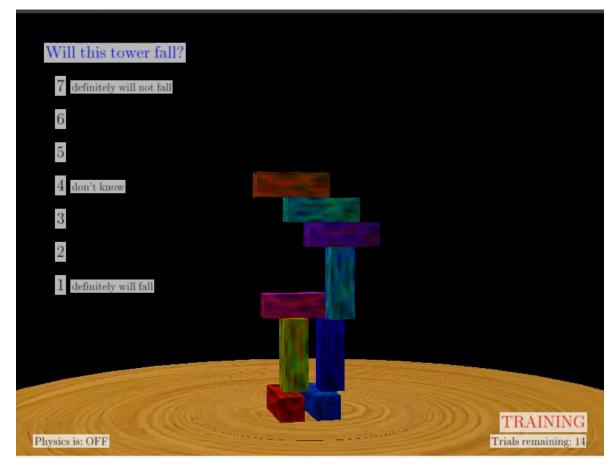
Predict fluids

Bates et al., 2015, 2018

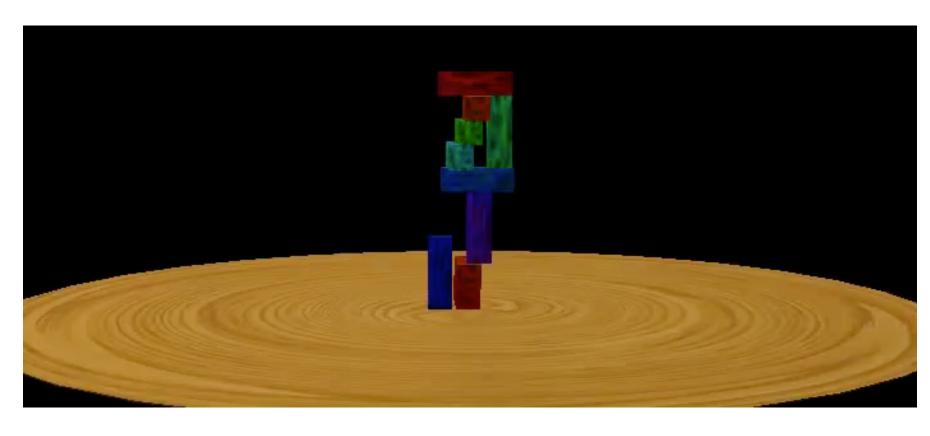


Experiments: What will happen? Why?

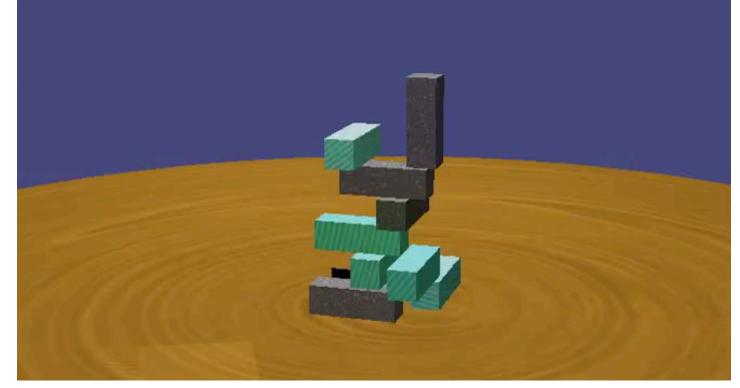
Will it fall?



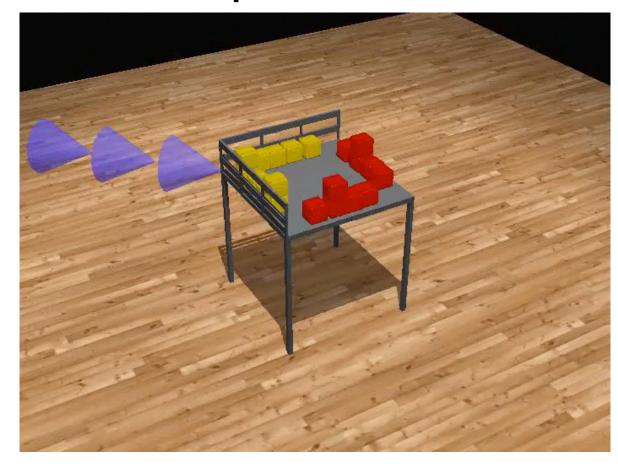
In which direction?



Different masses



Complex scenes



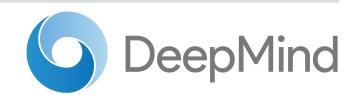
Battaglia et al., 2013

Infer the mass

Hamrick et al., 2016

Predict fluids

Bates et al., 2015, 2018



Message from cognition:

Humans use richly structured representations of objects and relations to reason about, and interact with, their everyday environment.

Message from cognition:

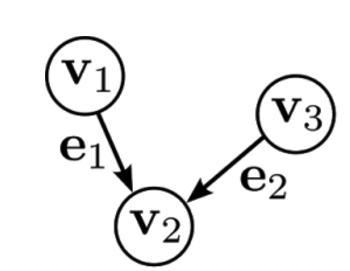
Humans use richly structured representations of objects and relations to reason about, and interact with, their everyday environment.

What insights does humans' structured intelligence offer AI?

We need better object- and relation-centric models in Al

A graph is a natural way to represent entities and their relations:

- "Nodes" correspond to entities, objects, events, etc.
- "Edges" correspond to their relations, interactions, transitions, etc.
- Inferences about entities and relations respect the graphical structure.

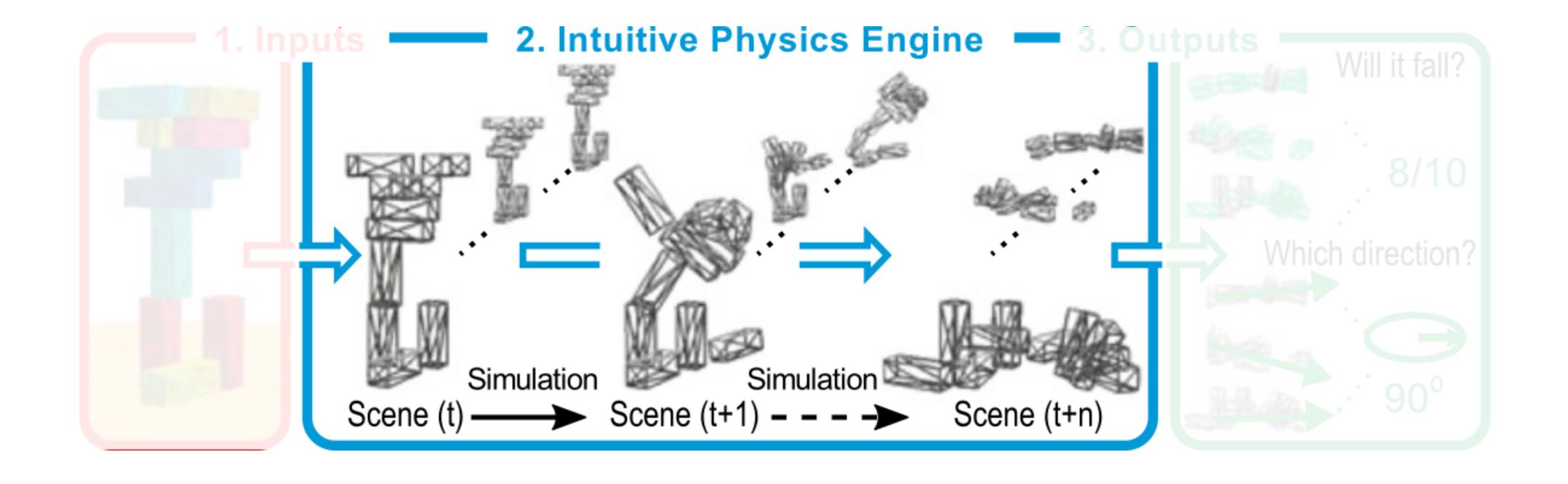


Graphs can capture data from many complex systems:

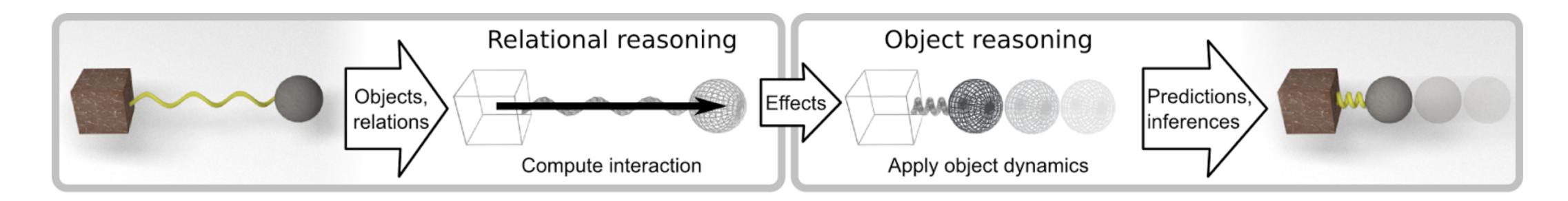
- Physical systems
- Scene graphs
- Social networks
- Linguistic structure
- Programs

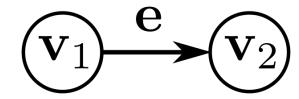
- Search trees
- Communication networks
- Transportation networks
- Chemical structure
- Phylogenetic trees

Intuitive physics as reasoning about graphs

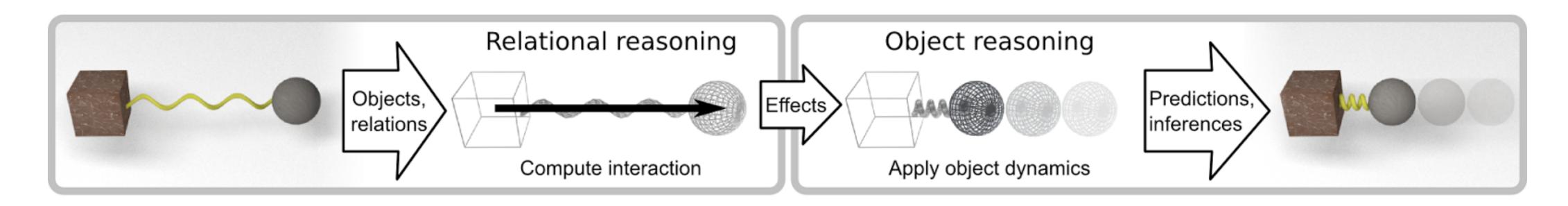


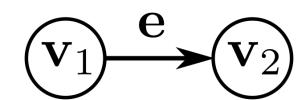
Intuitive physics as reasoning about graphs





Interaction Network



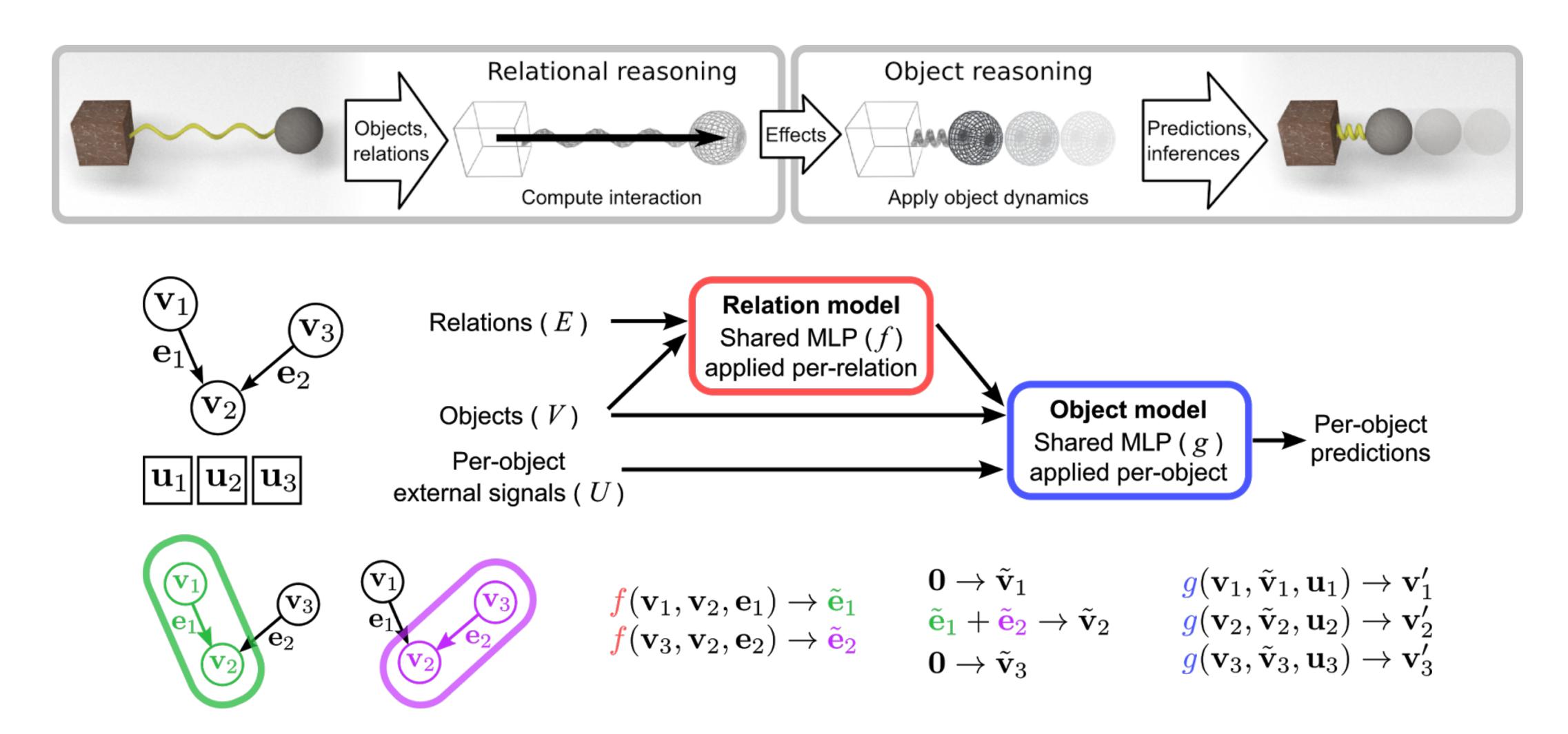


Strong relational inductive bias: Deep learning architecture which operates on graphs

Related to the broad family of "Graph Neural Networks" (Scarselli et al, 2009; Li et al, 2015) and "Message-Passing Neural Networks" (Gilmer et al., 2017).

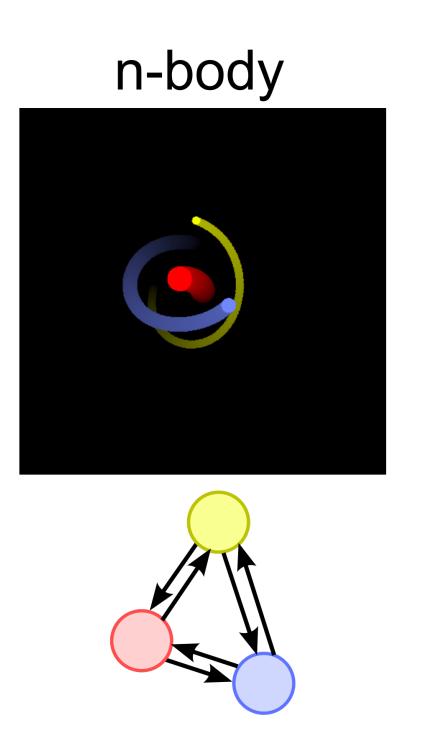
Chang et al. (2016) also proposed a similar version in parallel.

Interaction Network

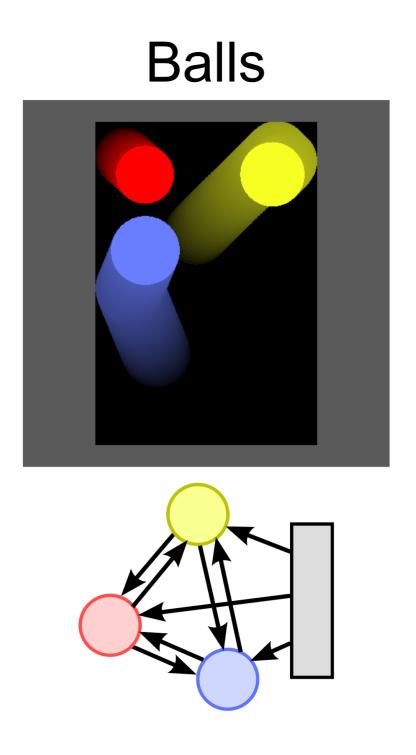


Interaction Network

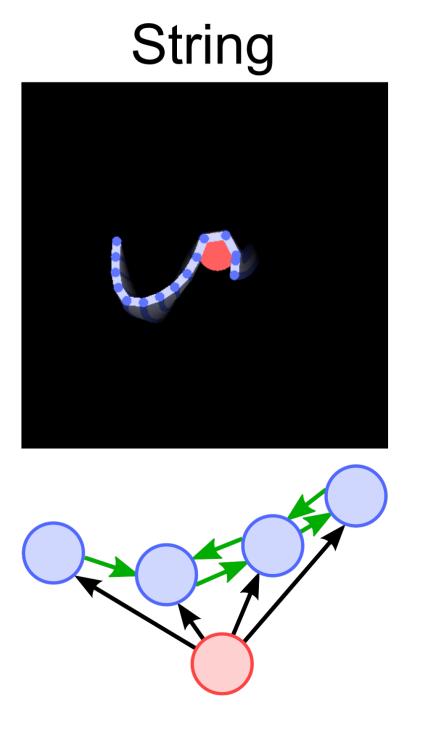
Can learn a general-purpose physics engine, simulating future states from initial ones



Gravitational forces

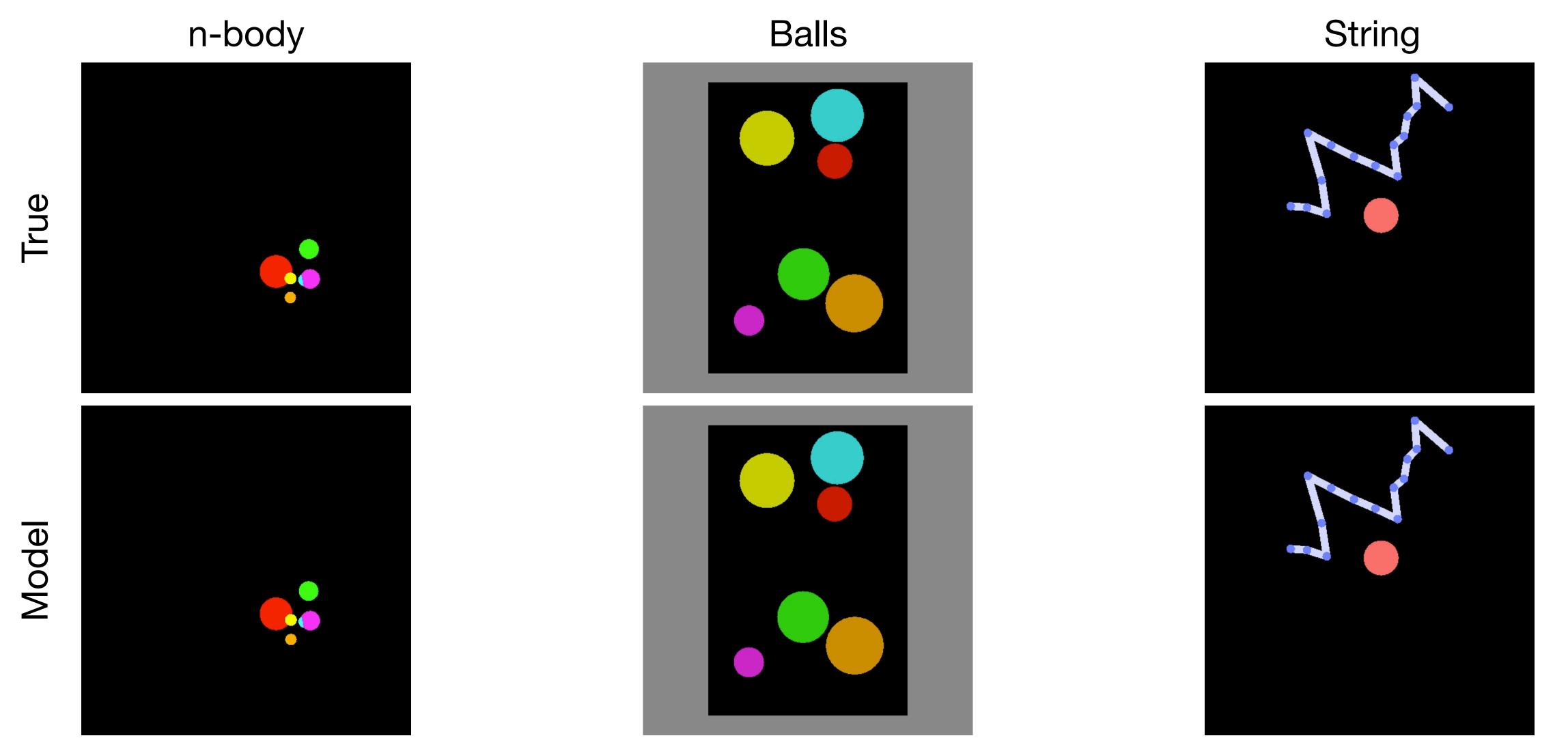


Rigid collisions between walls and balls

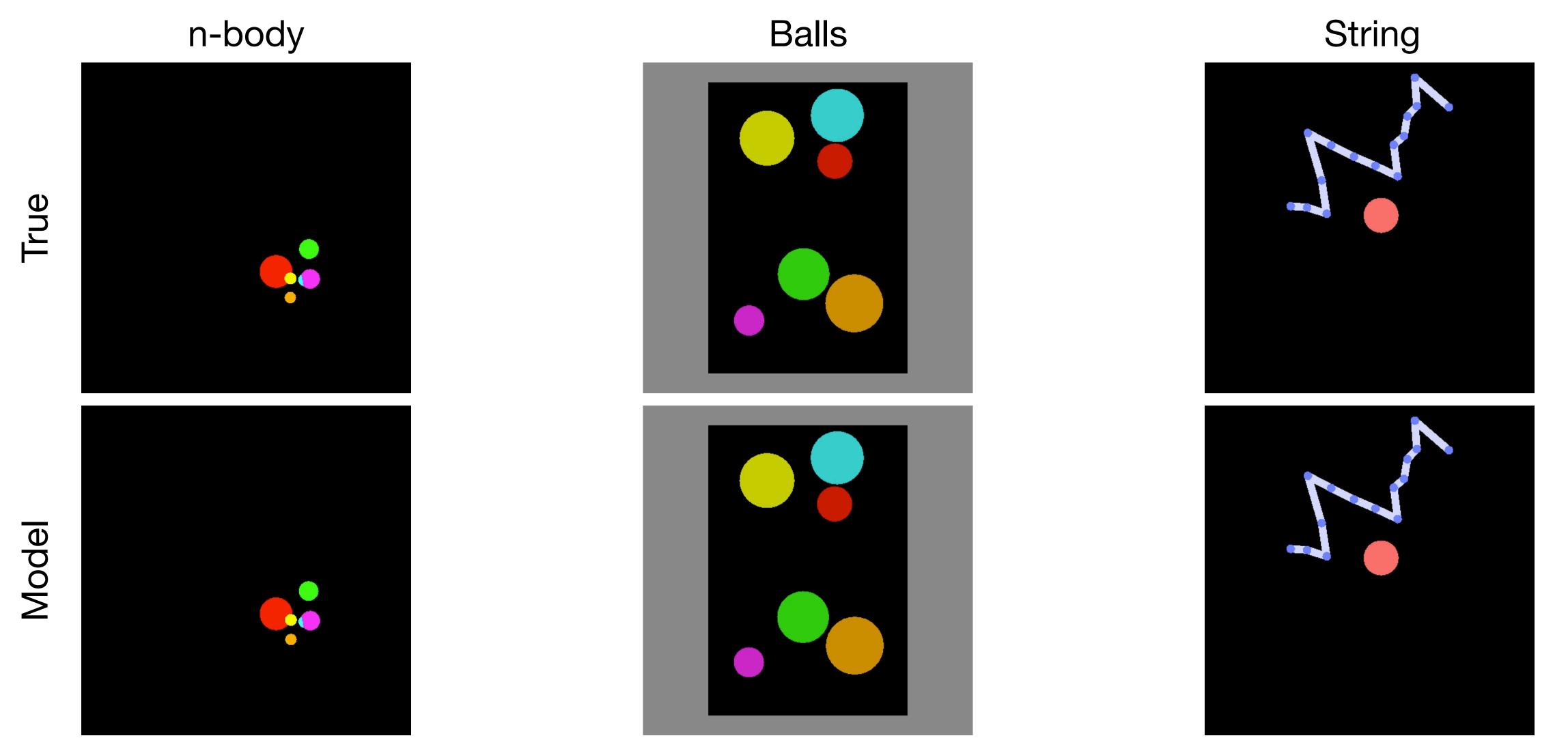


Springs and rigid collisions

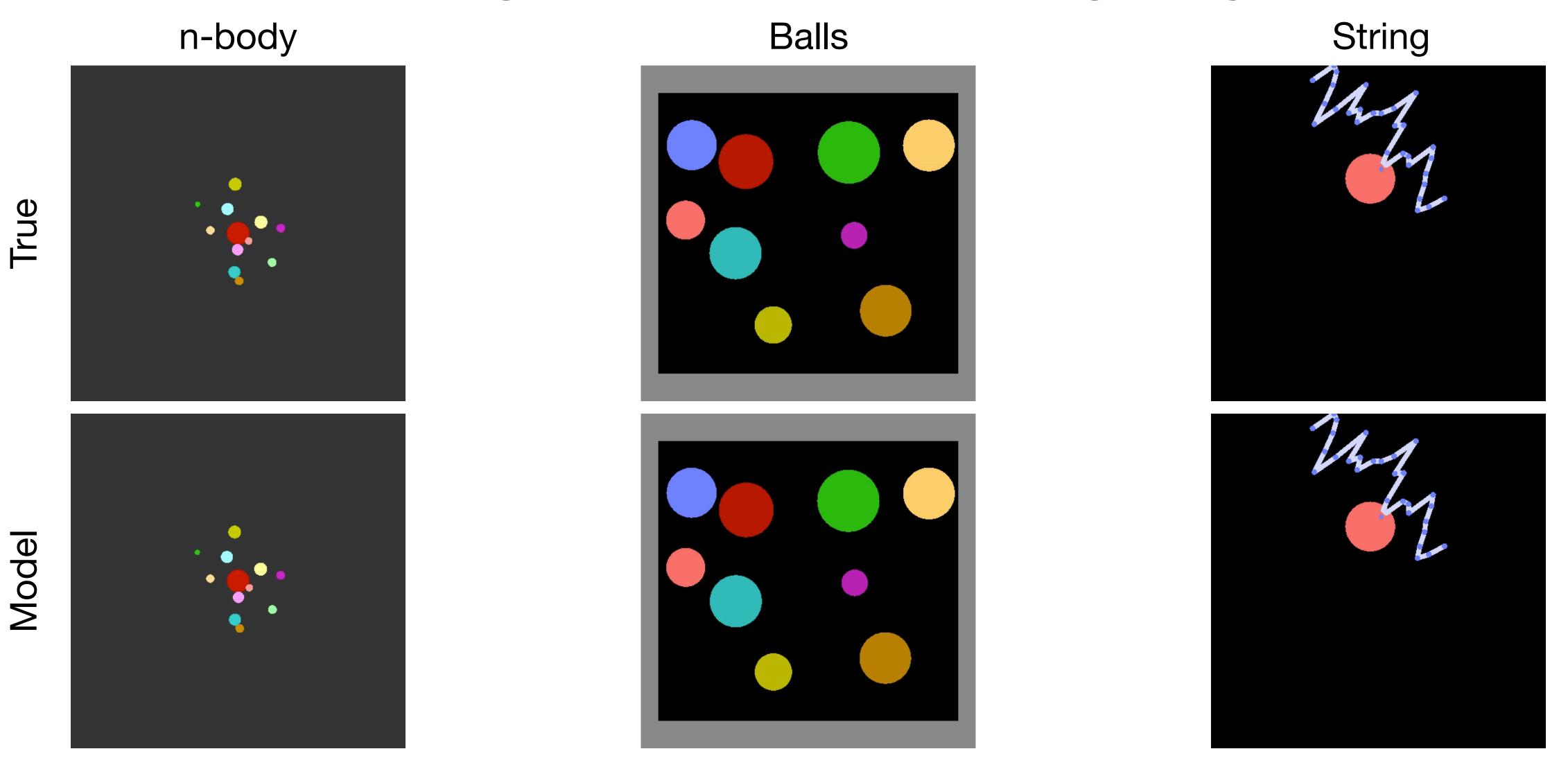
1000-step rollouts from 1-step supervised training



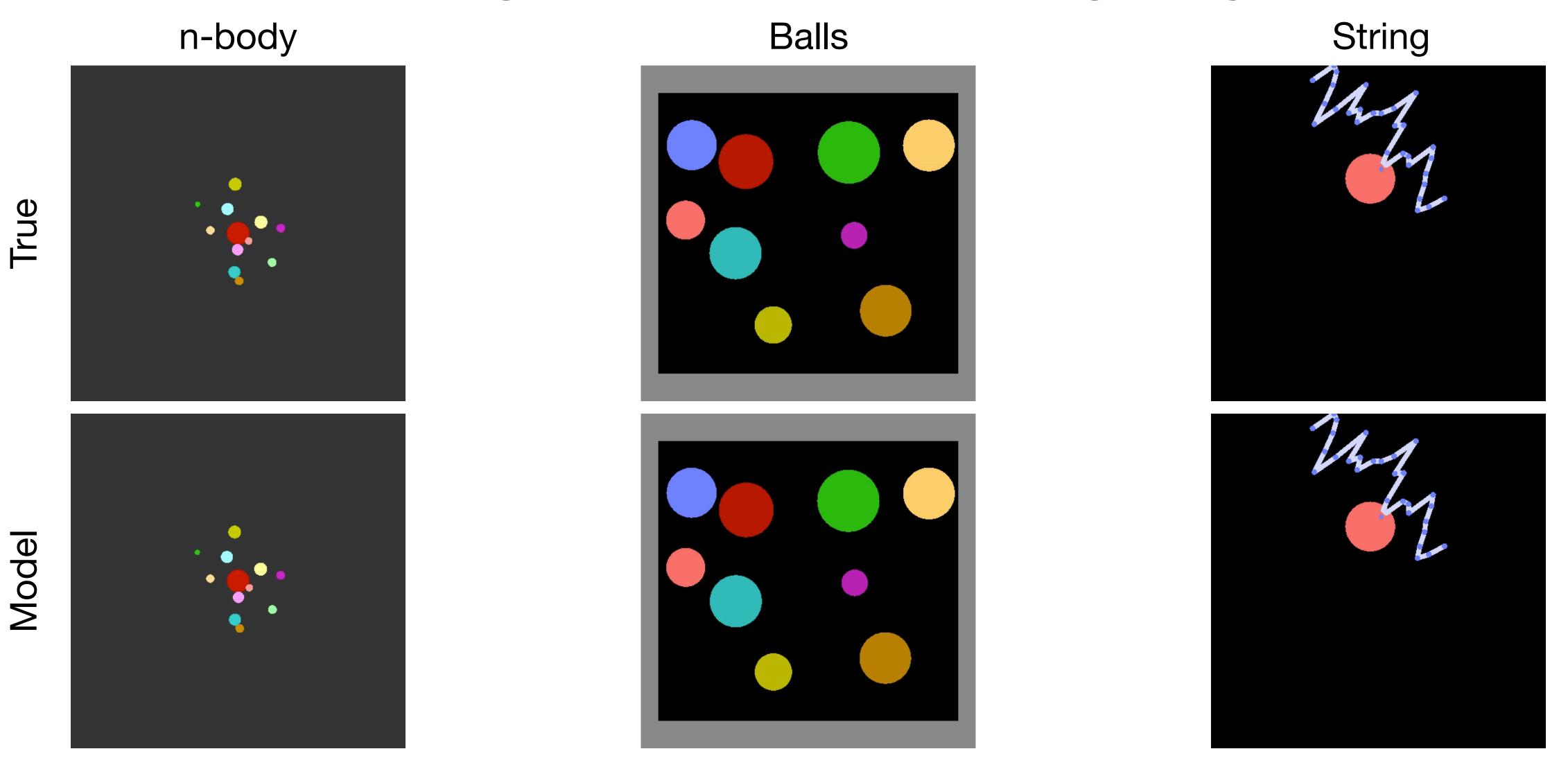
1000-step rollouts from 1-step supervised training



Zero-shot generalization to larger systems

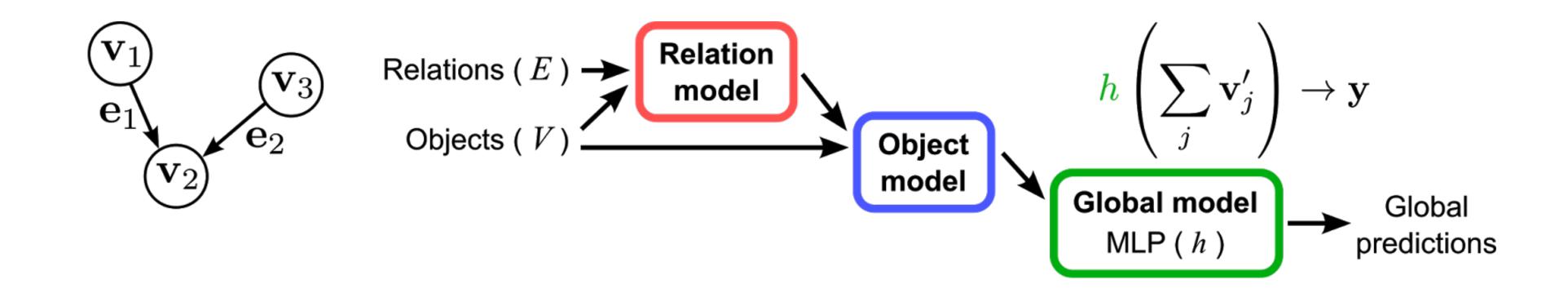


Zero-shot generalization to larger systems



Interaction Network for system-level predictions

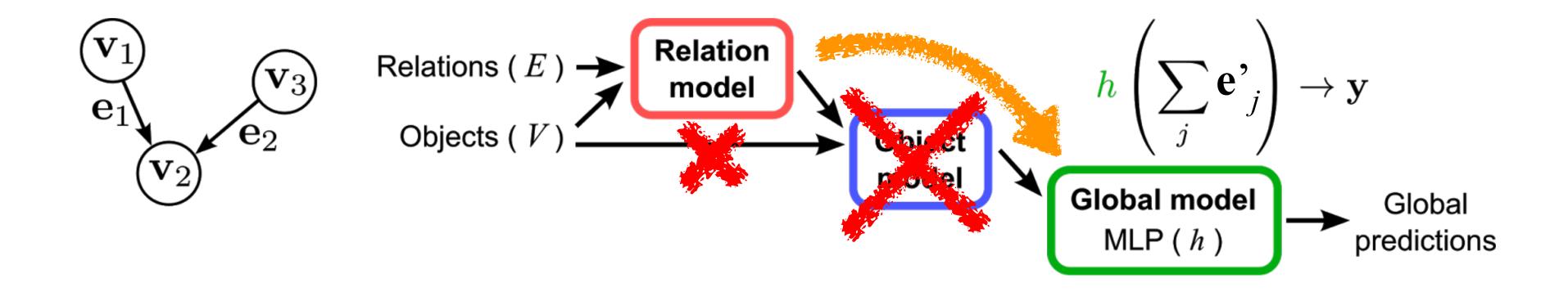
A "global model" can be added, which aggregates the per-object outputs to make predictions.



Can be trained to predict potential energy of a system, outperforming MLP baselines

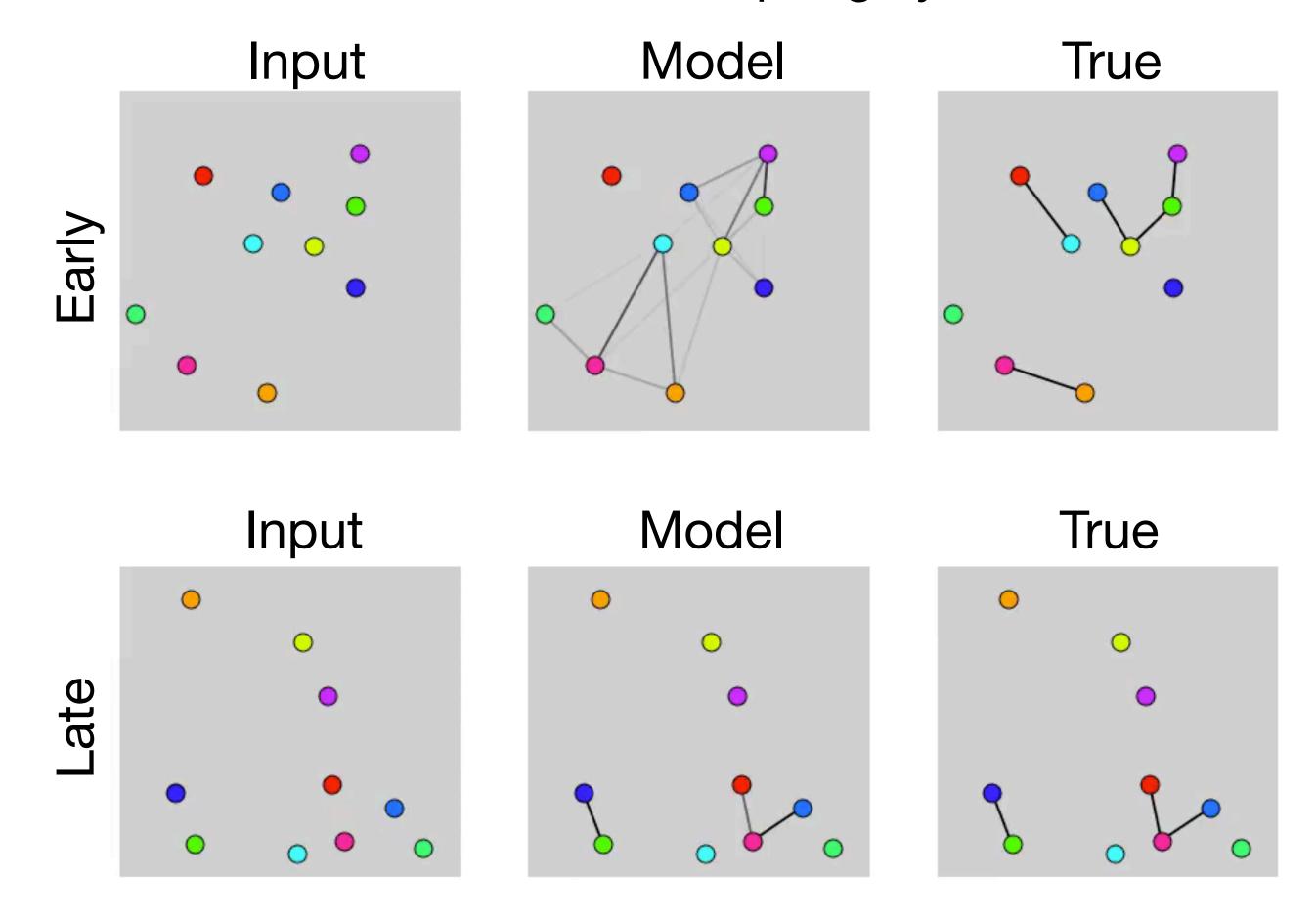
Relation Network

Remove "object model" and predict global outputs only using "relation model"'s output



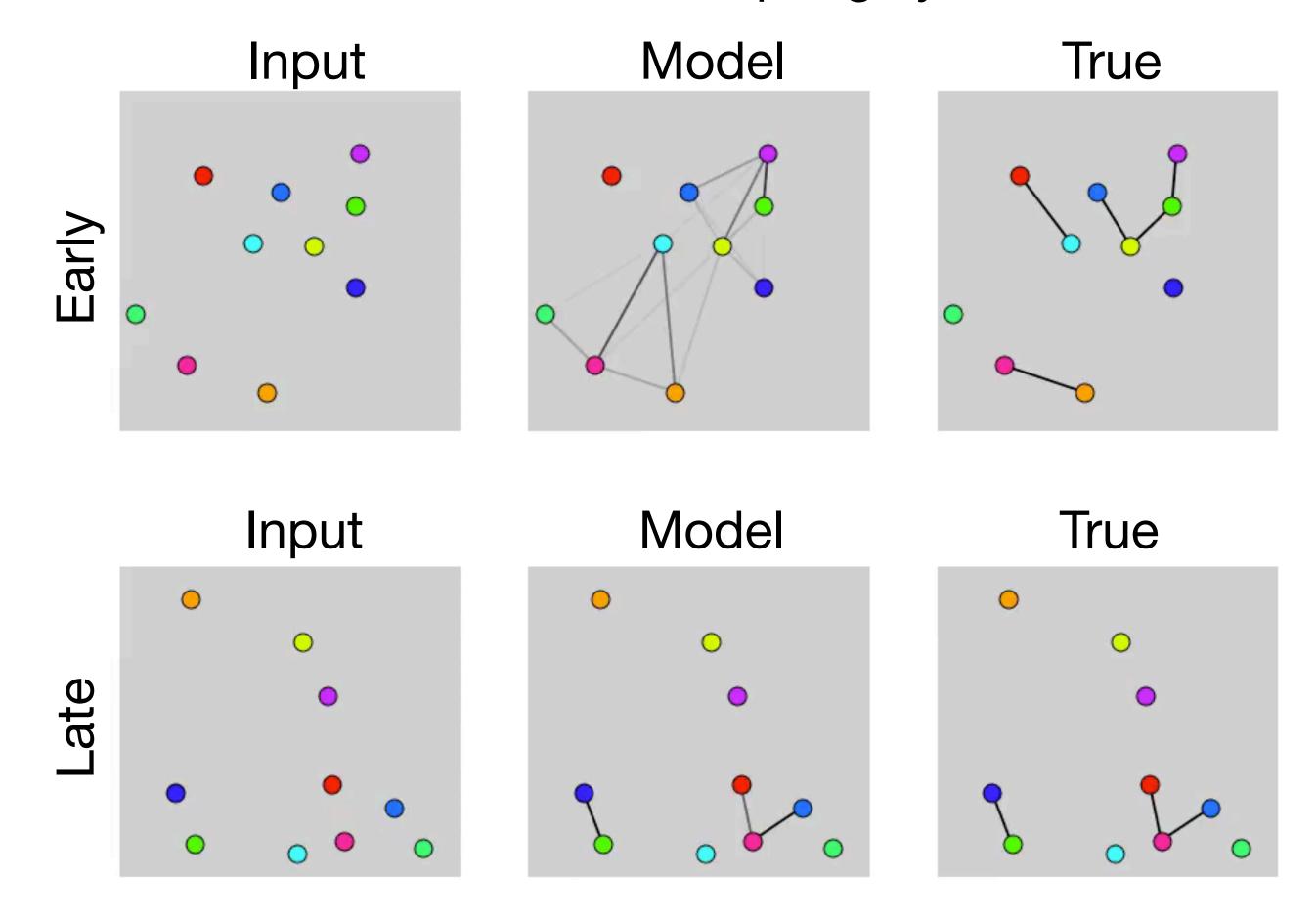
Raposo et al., 2017, ICLR workshop; Santoro et al., 2017, NeurIPS

Trained on mass-spring systems



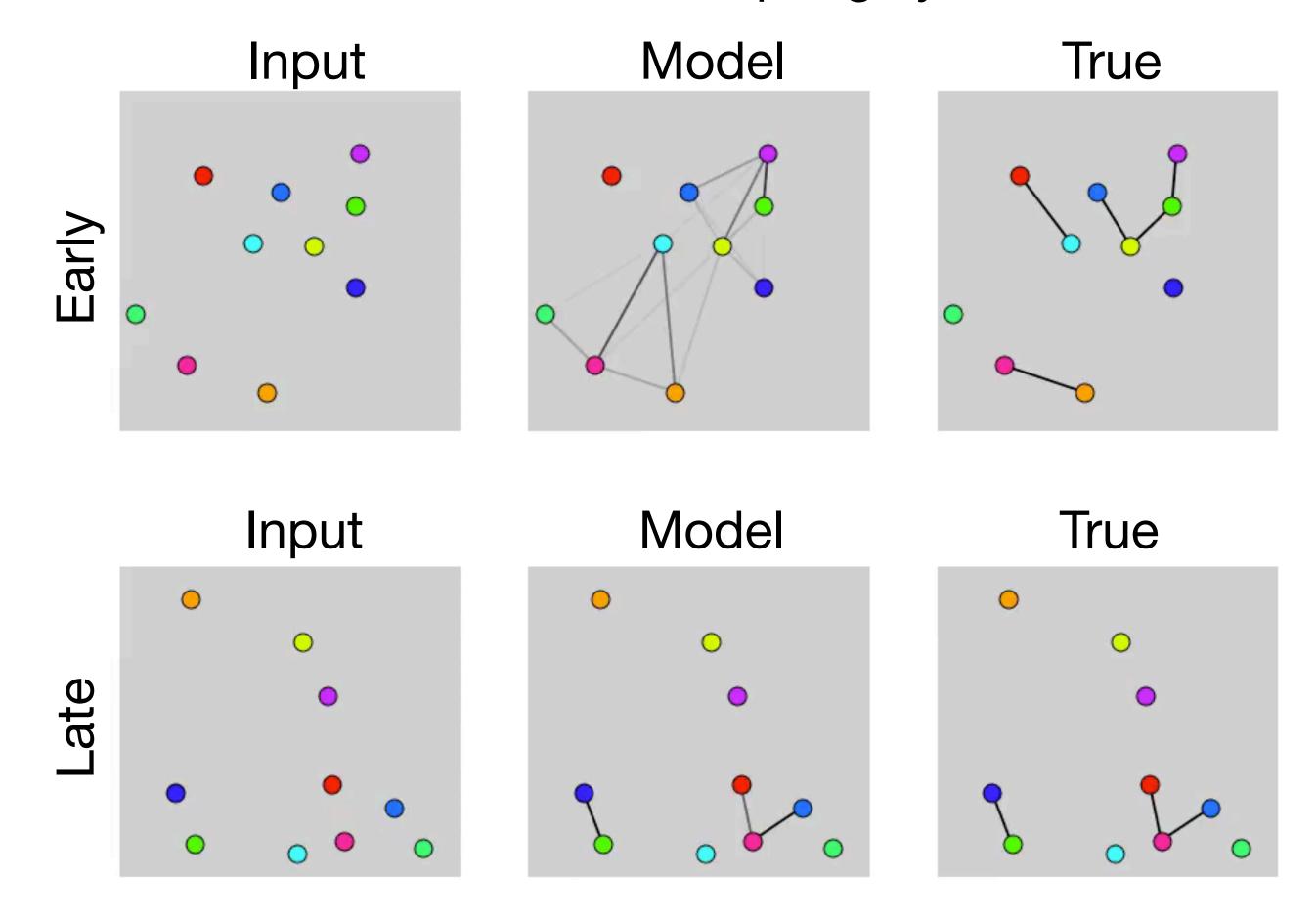


Trained on mass-spring systems



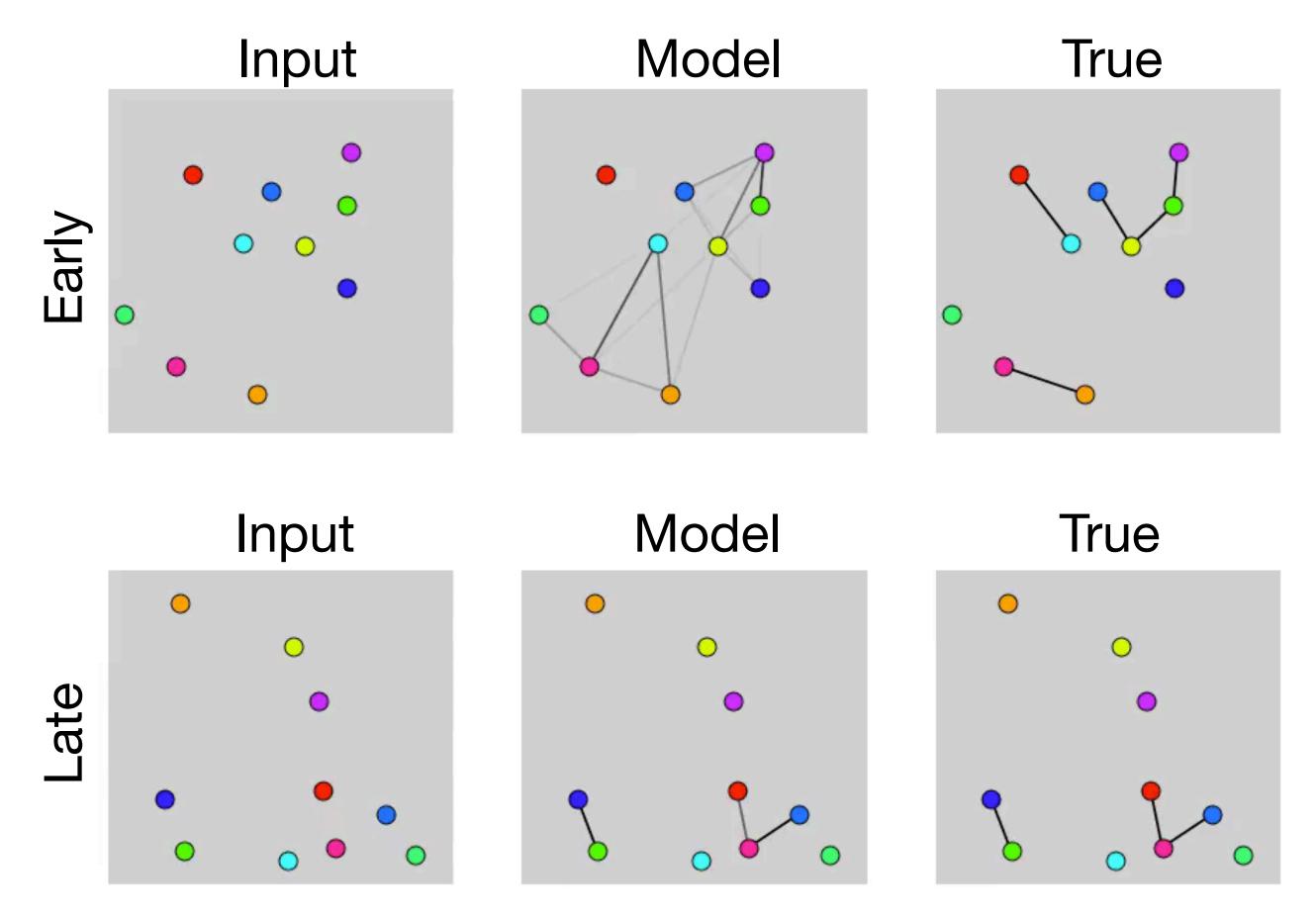


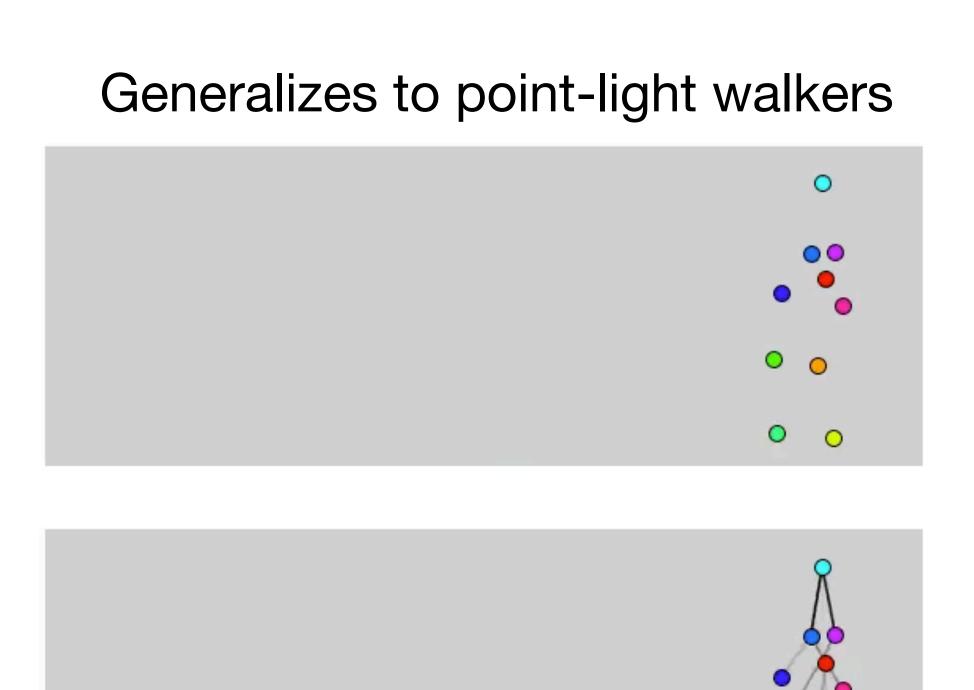
Trained on mass-spring systems



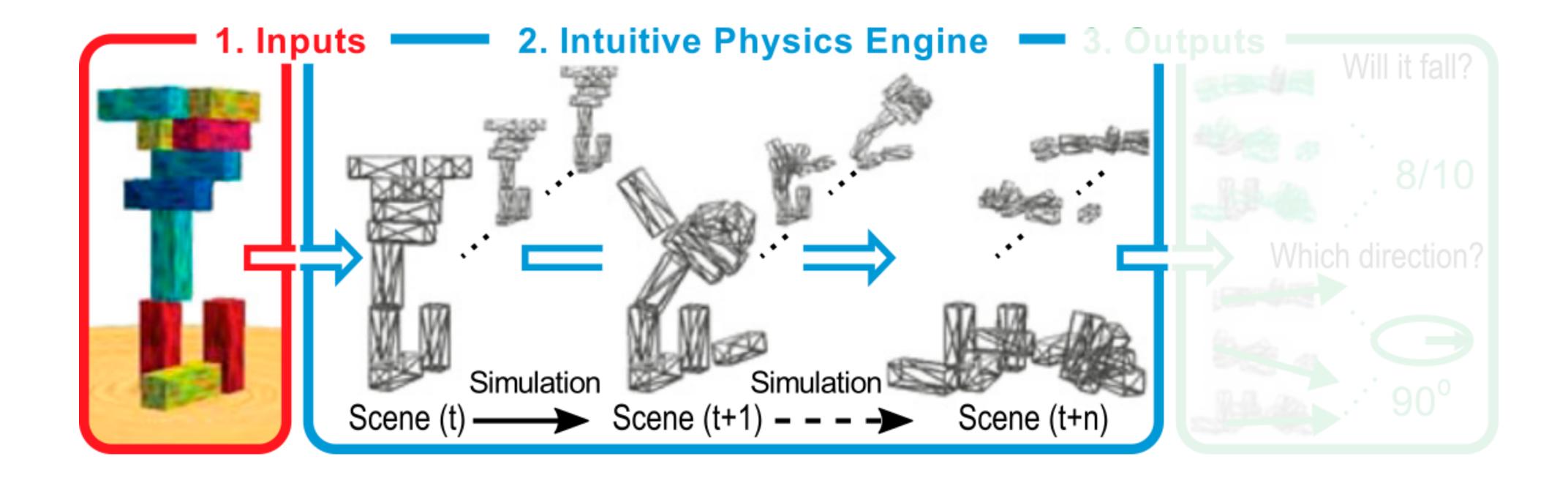


Trained on mass-spring systems

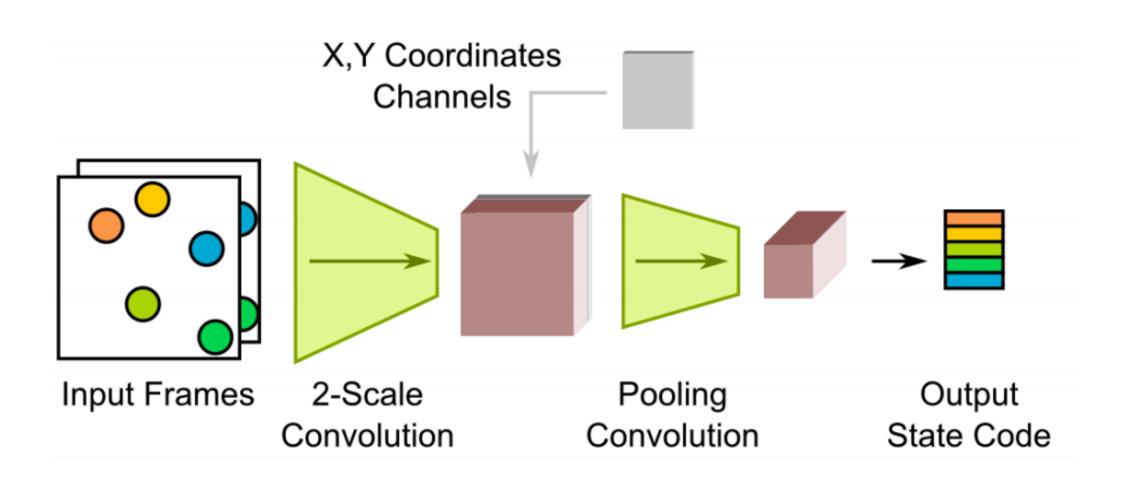




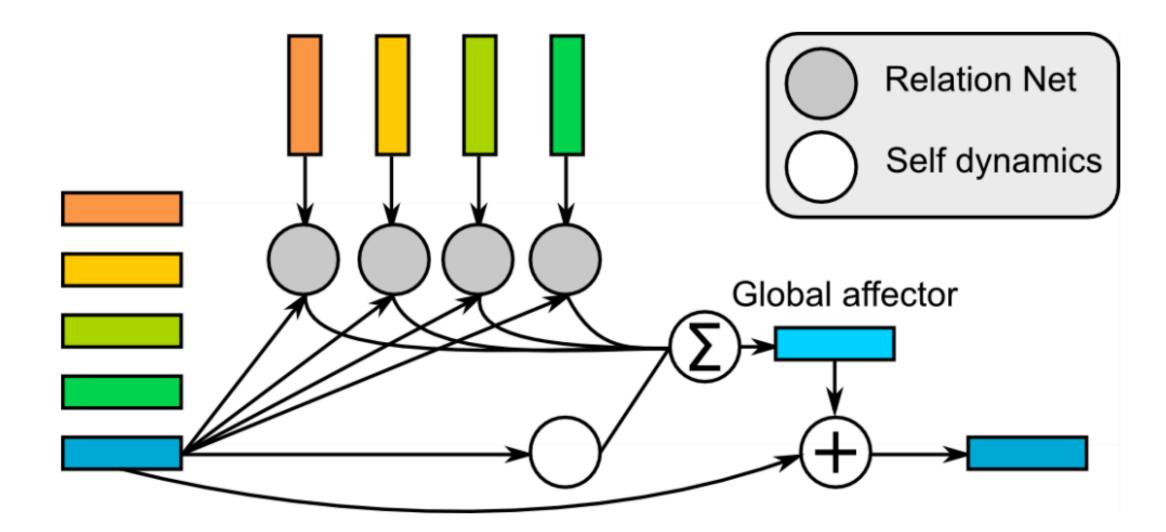
An interaction network augmented with a learnable perception system



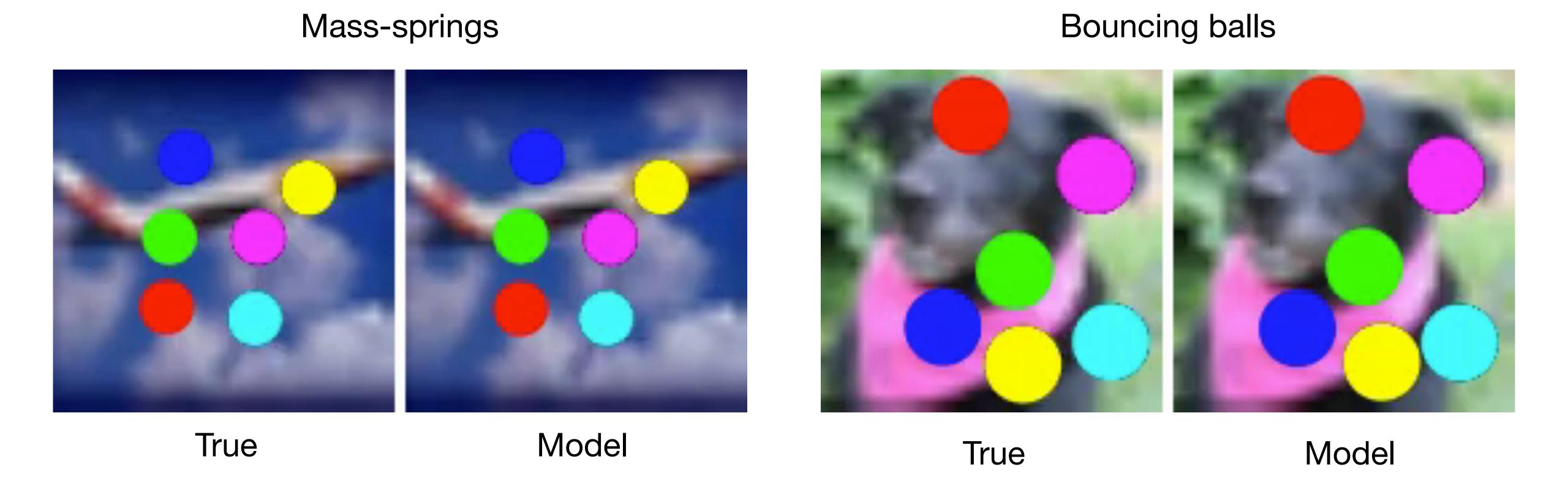
Multi-frame encoder (conv net-based)



Interaction network

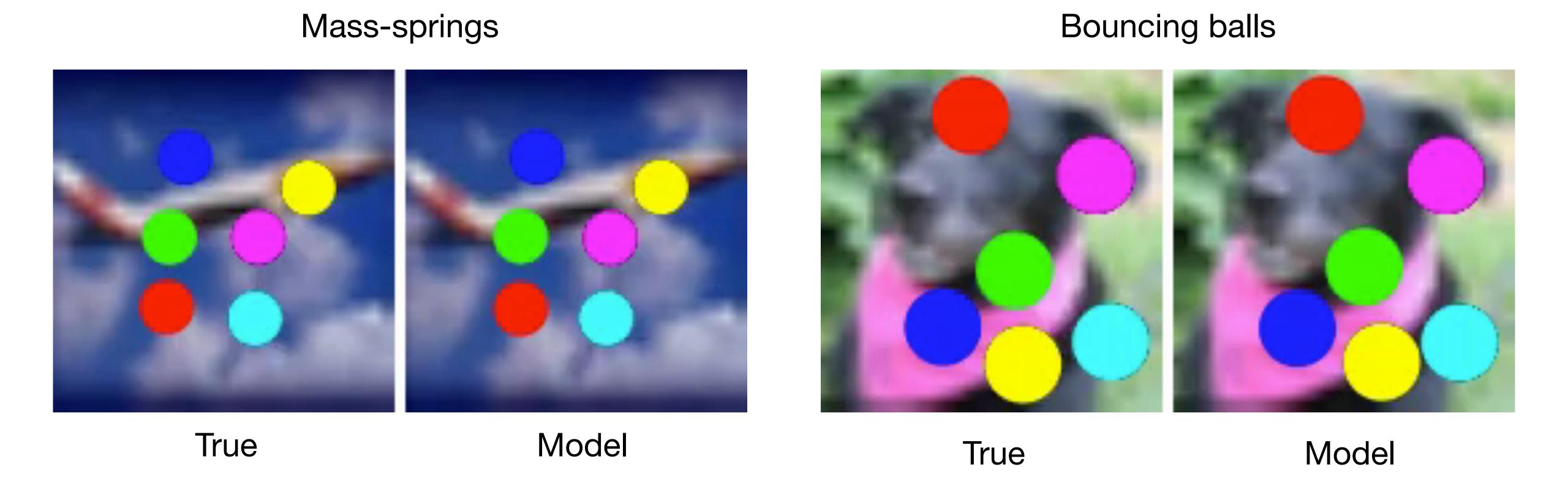


Watters et al., 2017, NeurIPS



Can even predict invisible objects, inferred from how they affect visible ones

Watters et al., 2017, NeurIPS

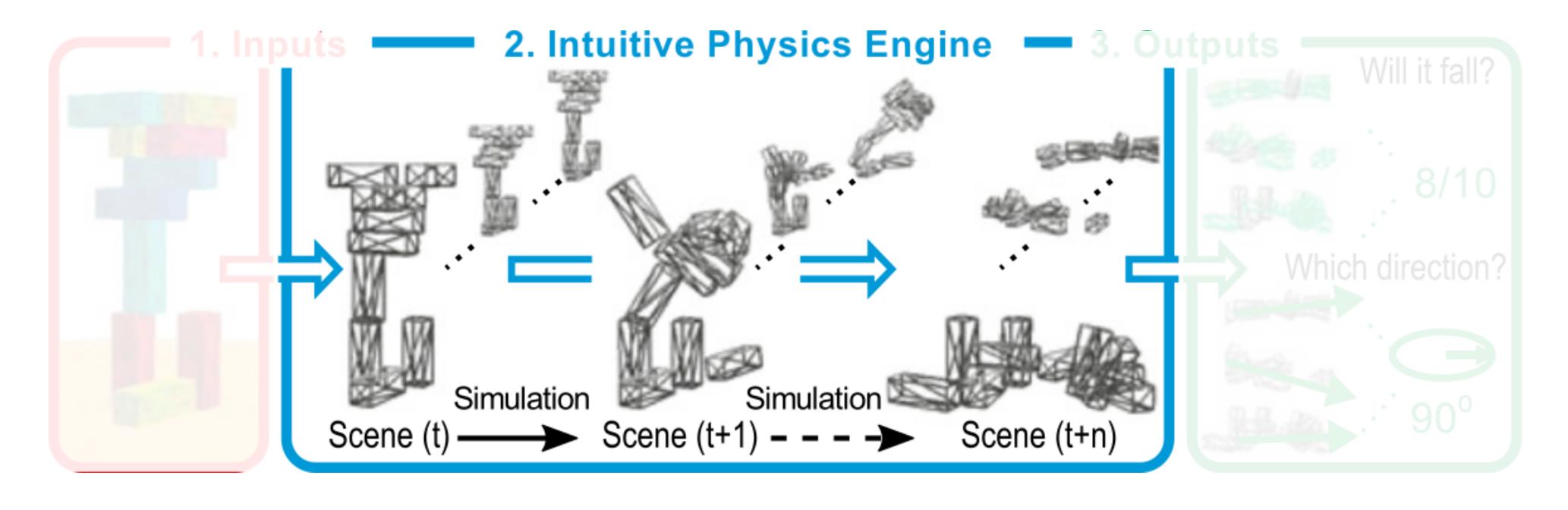


Can even predict invisible objects, inferred from how they affect visible ones

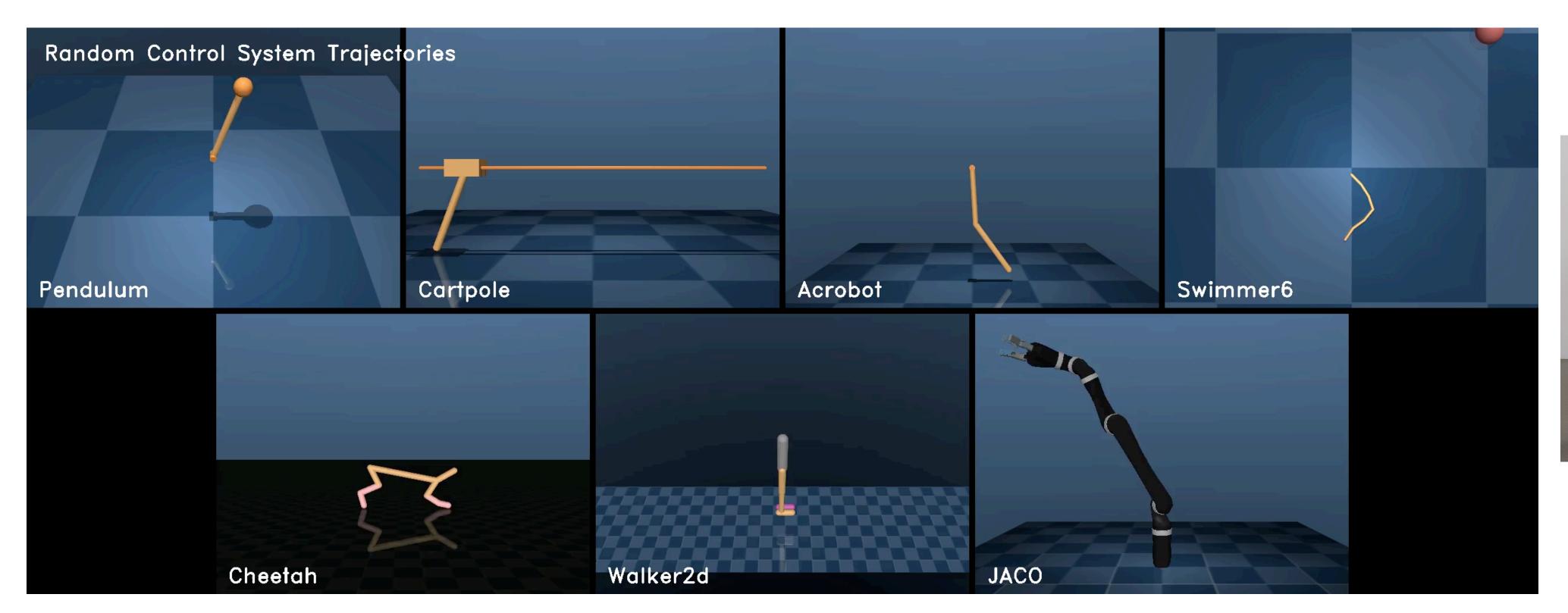
Watters et al., 2017, NeurIPS

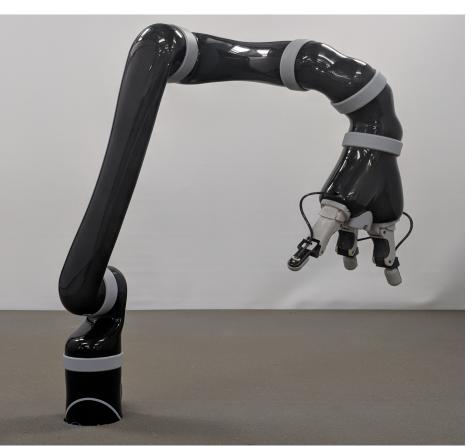
Learning to simulate more complex robotic systems

Alvaro Sanchez-Gonzalez, Nicolas Heess, Tobi Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, Peter Battaglia ICML, 2018



Systems: "DeepMind Control Suite" (Mujoco) & real JACO

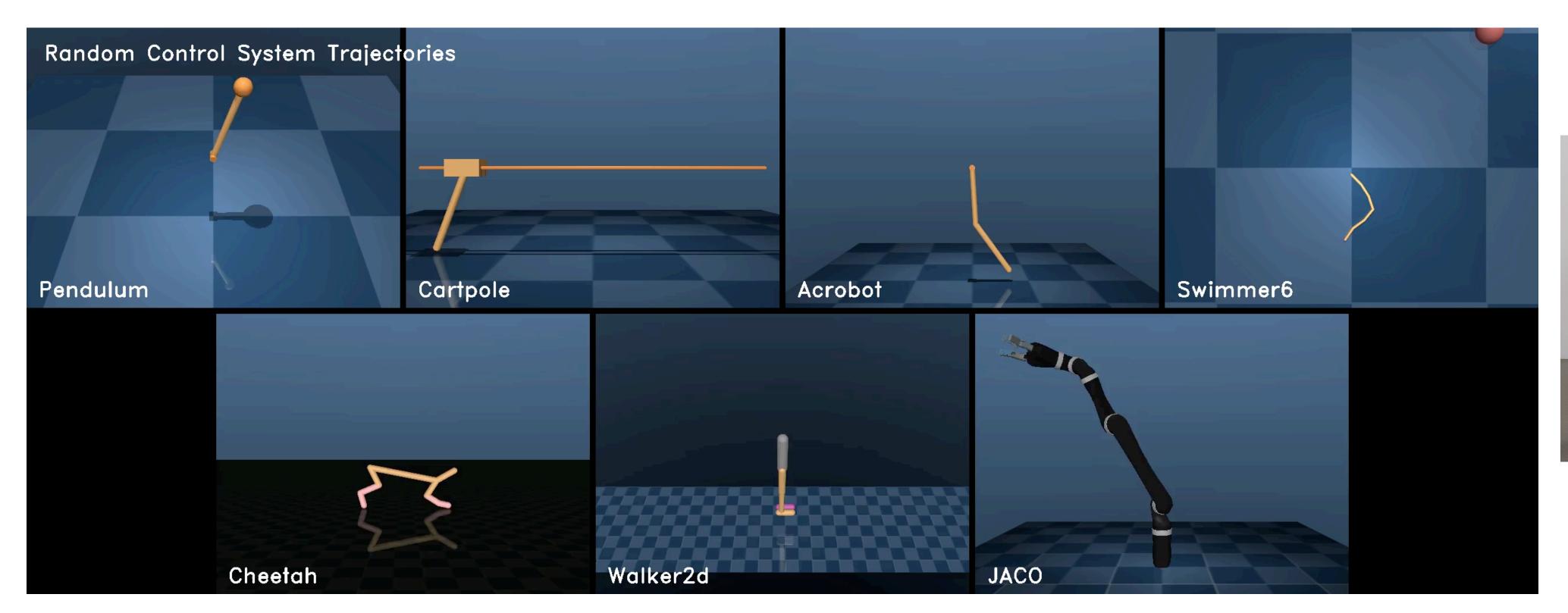


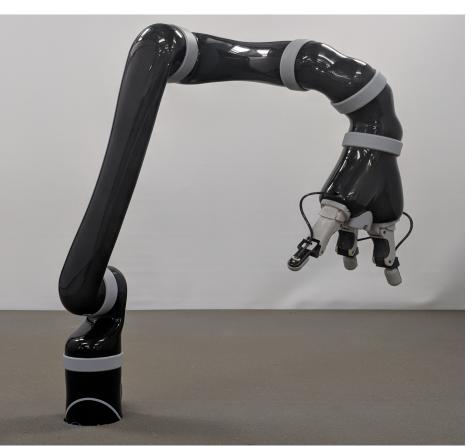


JACO Arm

DeepMind Control Suite (Tassa et al., 2018)

Systems: "DeepMind Control Suite" (Mujoco) & real JACO





JACO Arm

DeepMind Control Suite (Tassa et al., 2018)

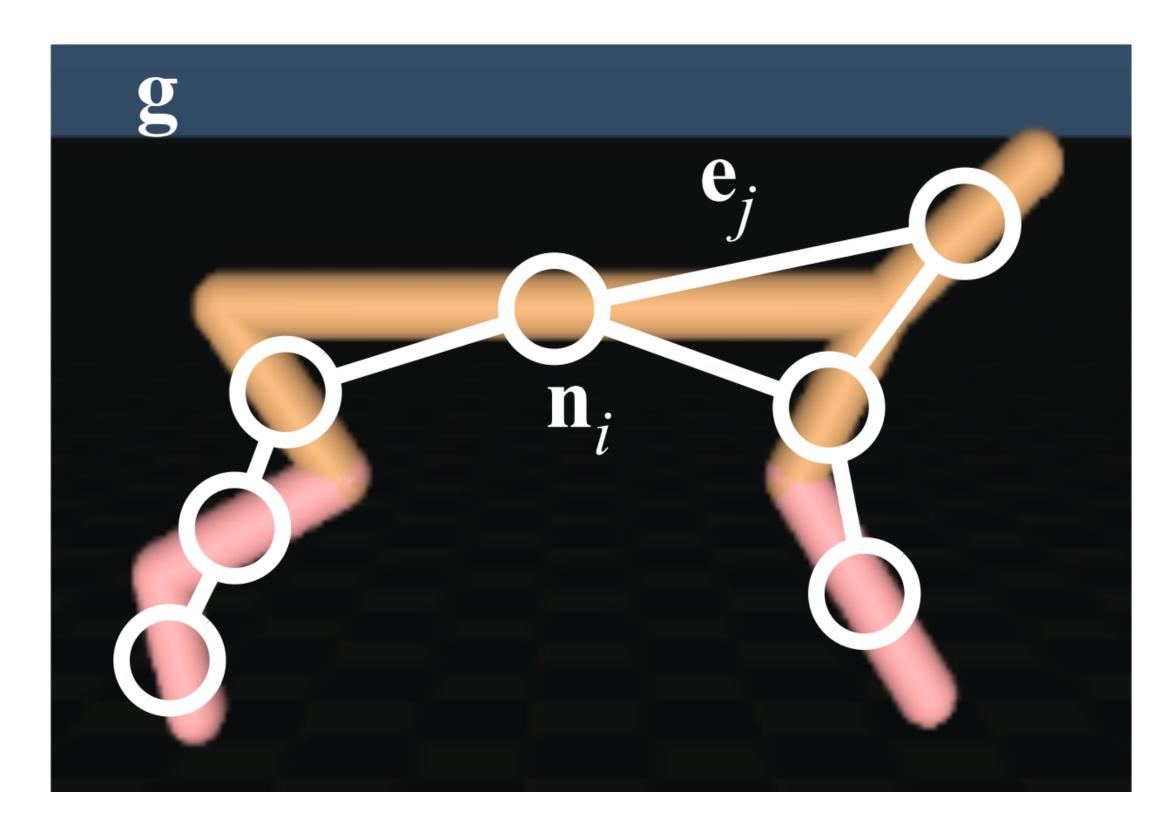
Kinematic tree of the actuated system as a graph

Representing physical system as a graph:

- Bodies → Nodes
- Joints → Edges
- Global properties

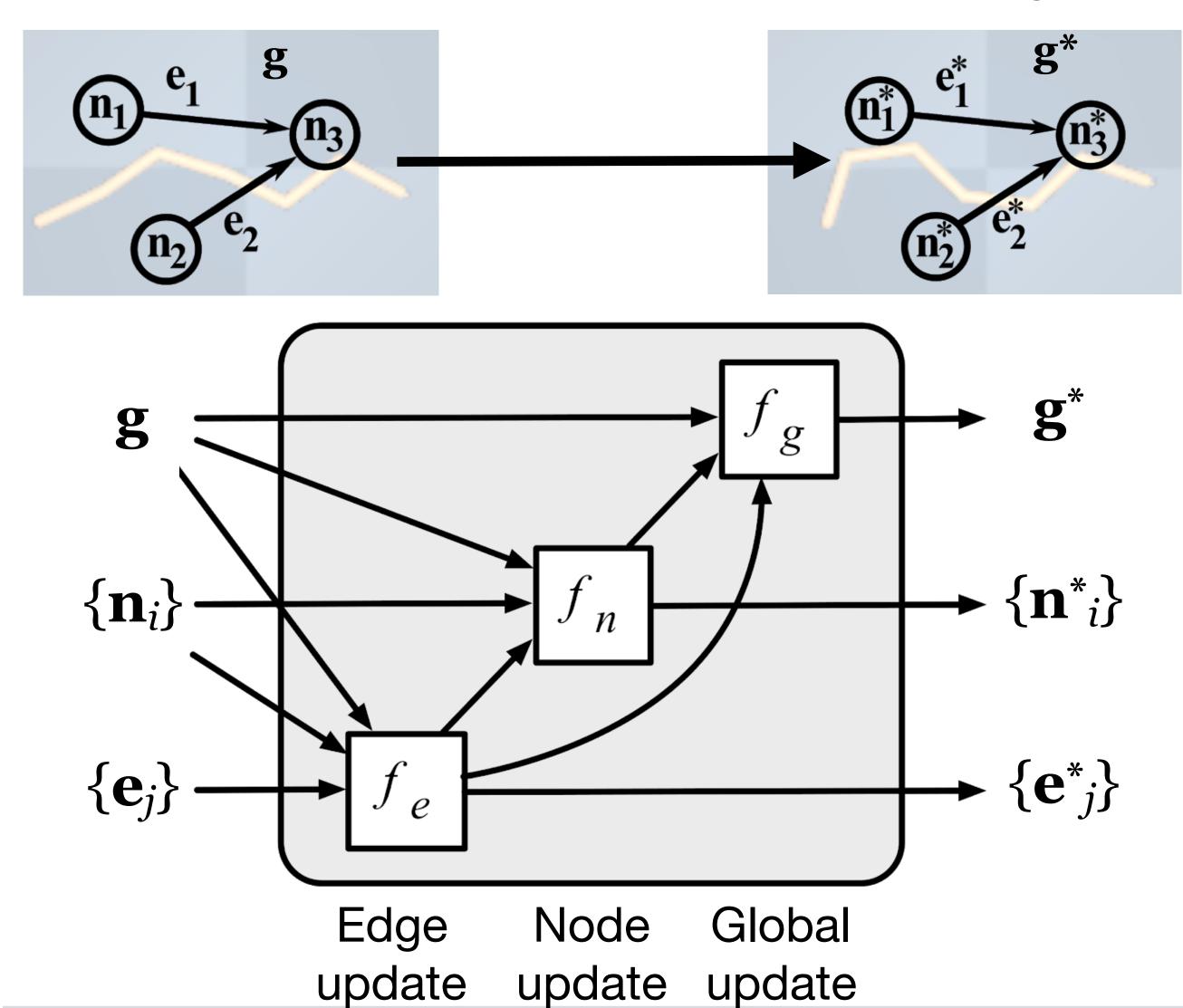
Similar representation to:

- Interaction Networks (Battaglia et al. 2016)
- NerveNet (Wang et al. 2018) (graph-structured policy, rather than model)

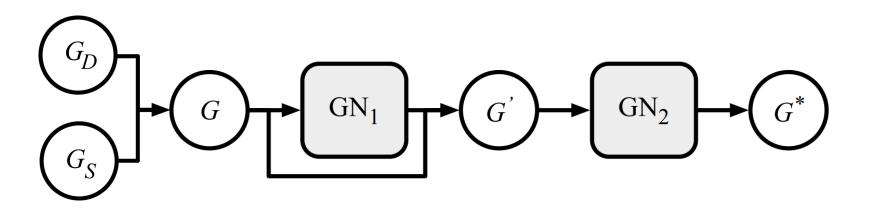


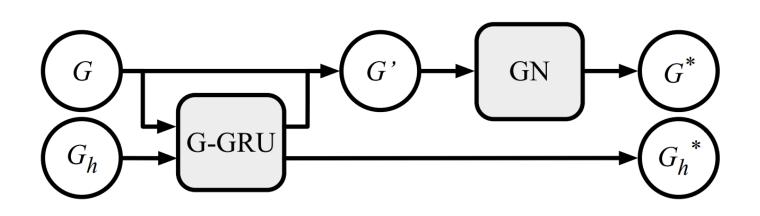
Graph Network (GN)

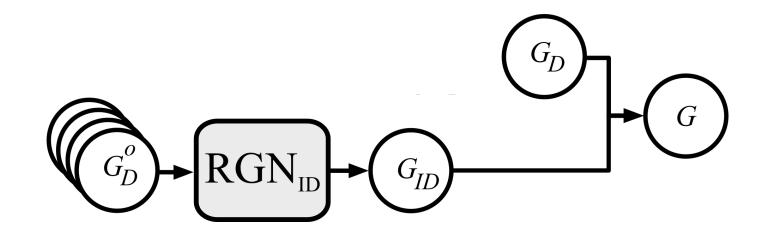
Battaglia et al., 2018



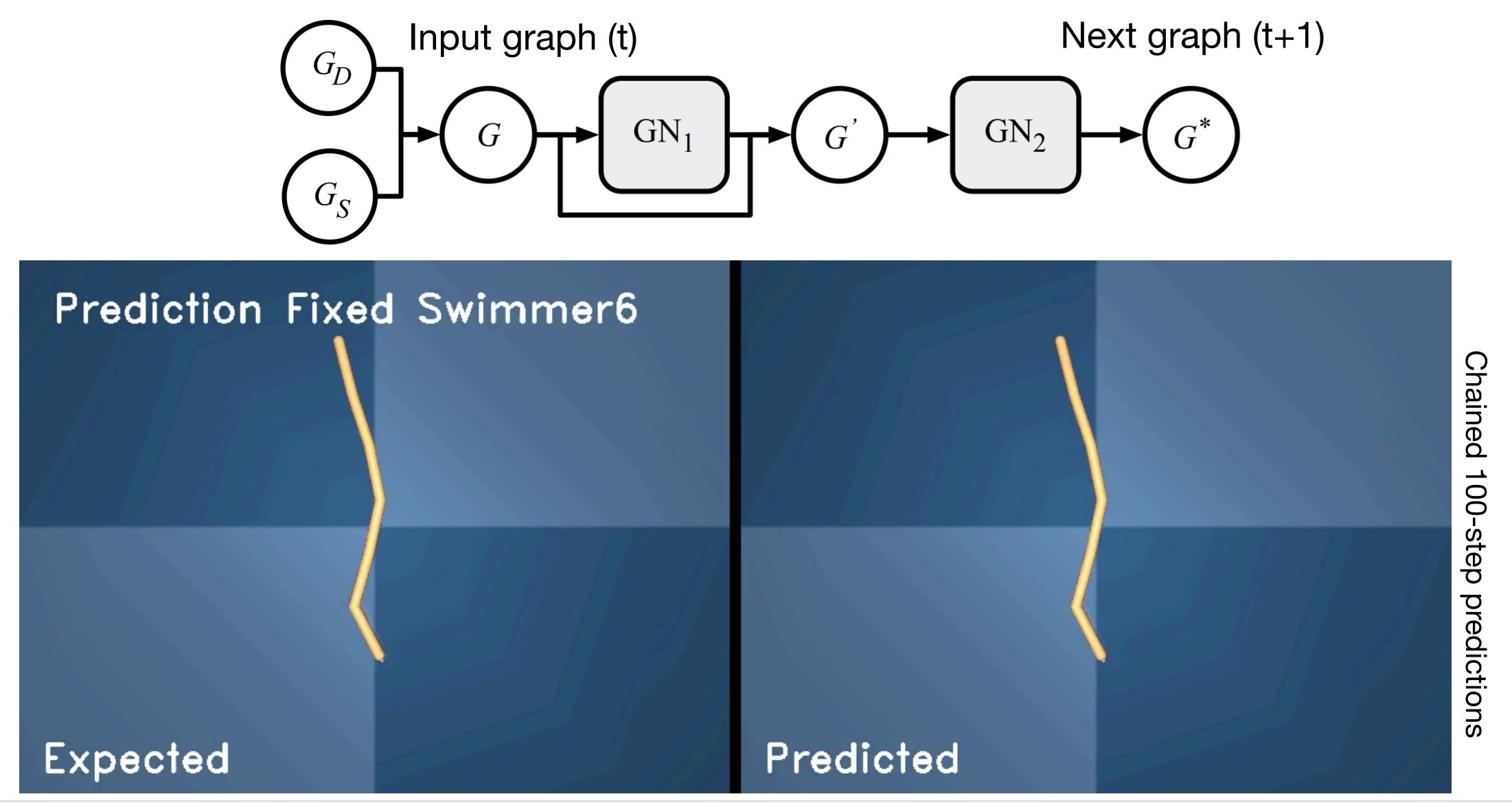
Graph-to-graph, modular block design



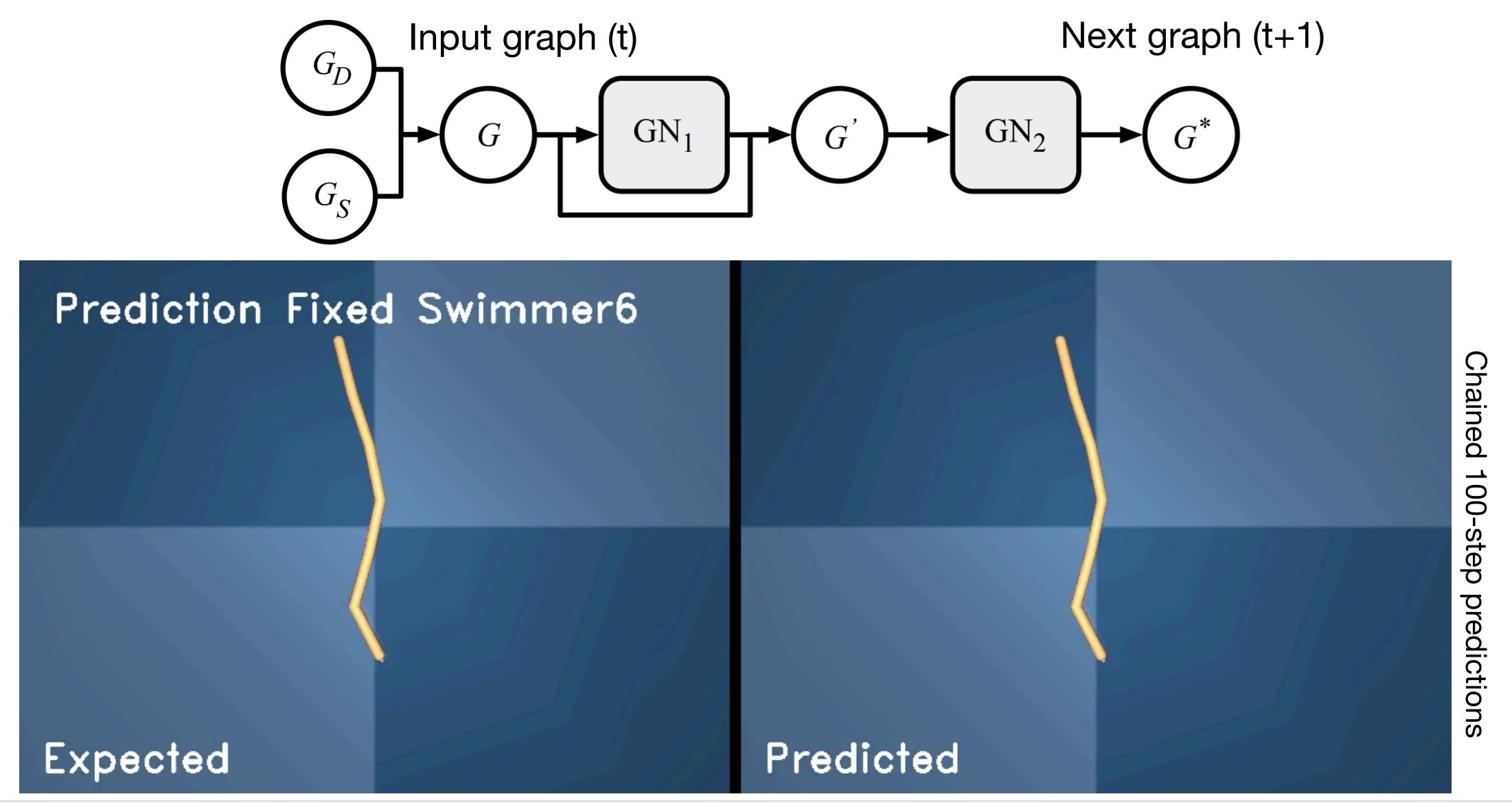




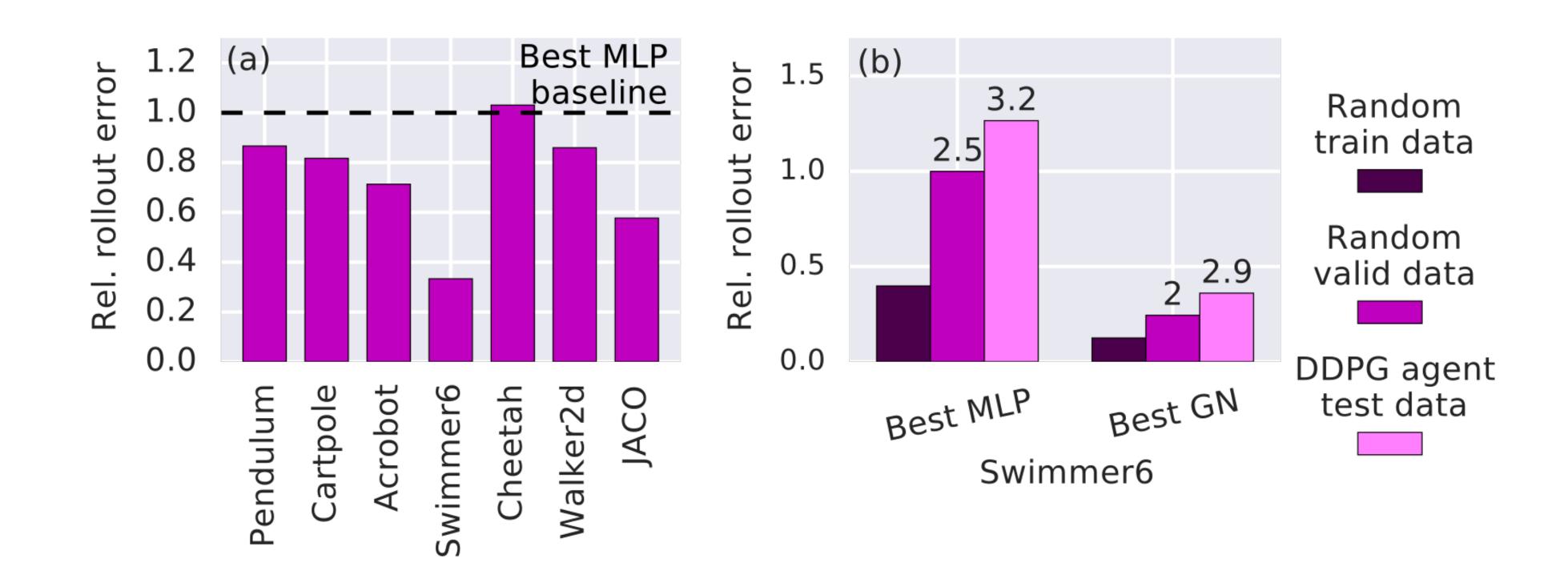
Forward model: supervised, 1-step training w/ random control inputs



Forward model: supervised, 1-step training w/ random control inputs



Results: Graph Net (GN) vs MLP forward models



More repeated structure: Better performance over MLP Better test generalization, within and outside of the training distribution

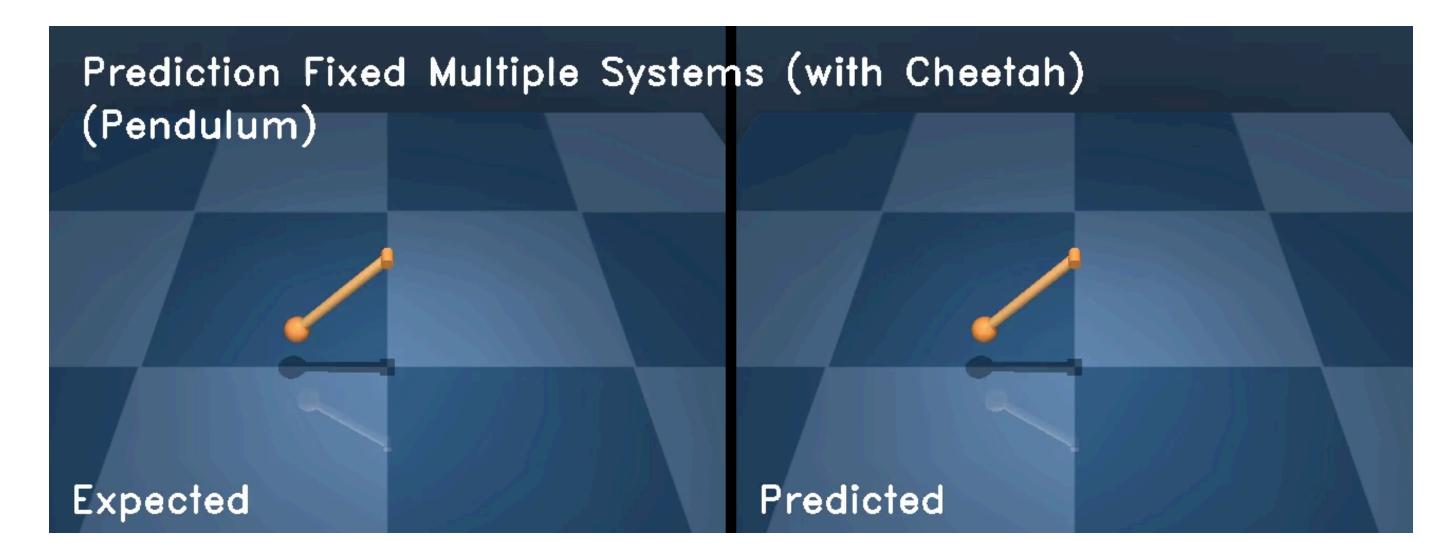
GN forward model: Multiple systems & zero-shot generalization

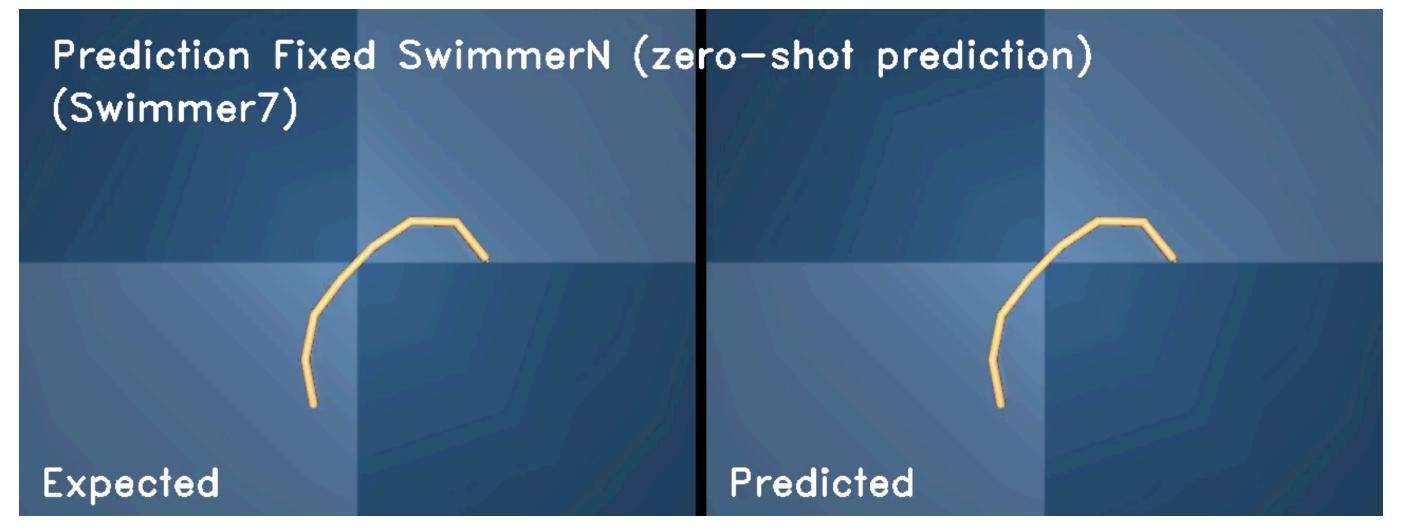
Single model trained:

Pendulum, Cartpole, Acrobot,
 Swimmer6 & Cheetah

Zero-shot generalization: Swimmer

- # training links: {3, 4, 5, 6, -, 8, 9, -, -, ...}
- # testing links: {-, -, -, -, 7, -, -, 10-14}





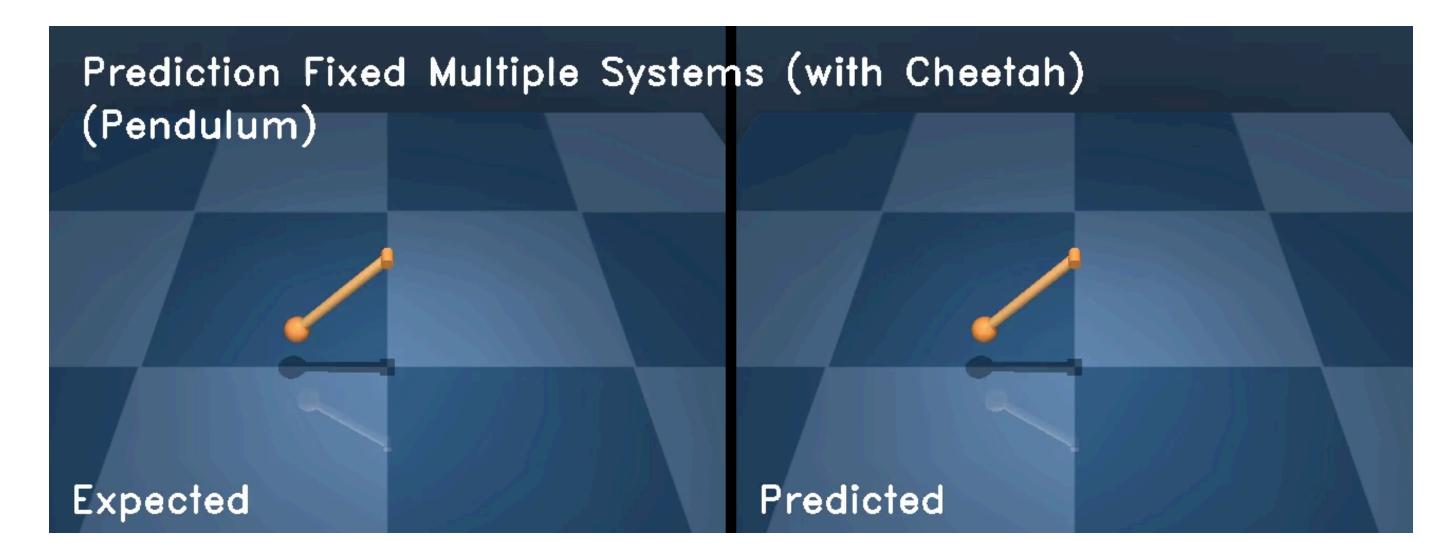
GN forward model: Multiple systems & zero-shot generalization

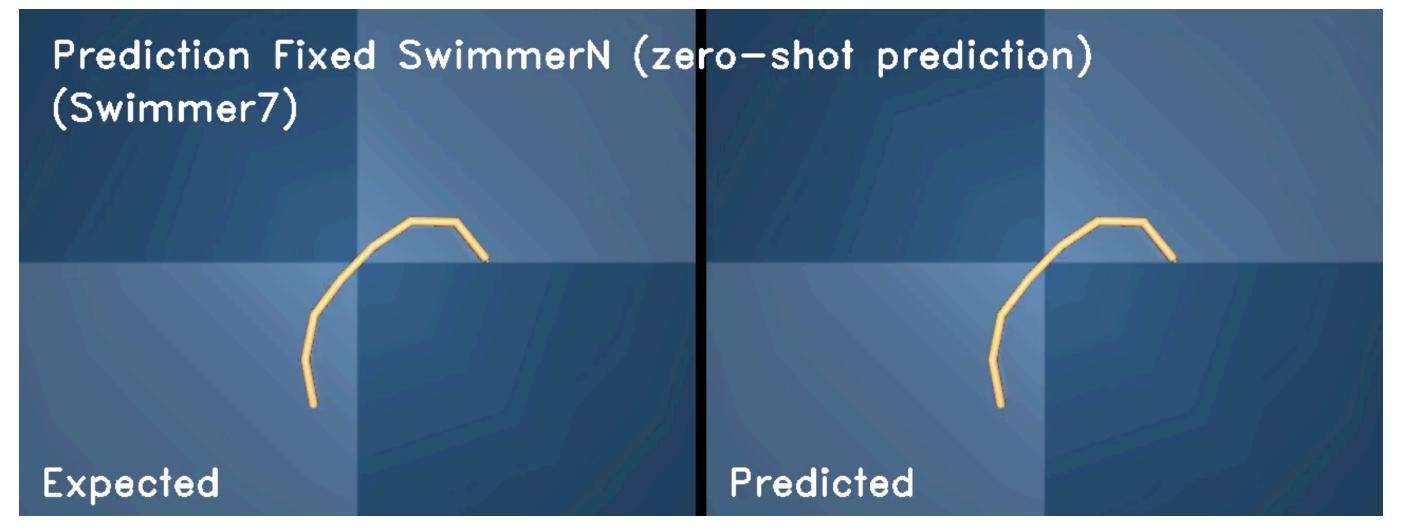
Single model trained:

Pendulum, Cartpole, Acrobot,
 Swimmer6 & Cheetah

Zero-shot generalization: Swimmer

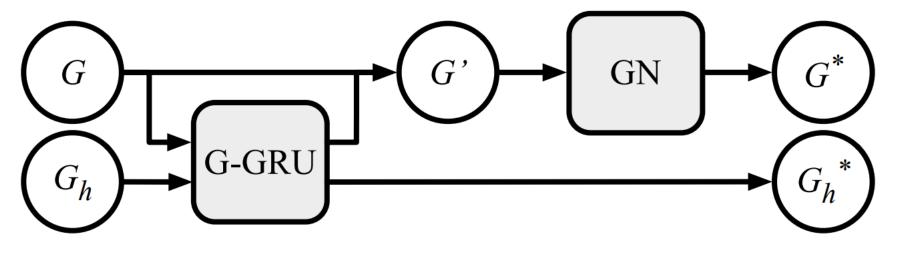
- # training links: {3, 4, 5, 6, -, 8, 9, -, -, ...}
- # testing links: {-, -, -, -, 7, -, -, 10-14}



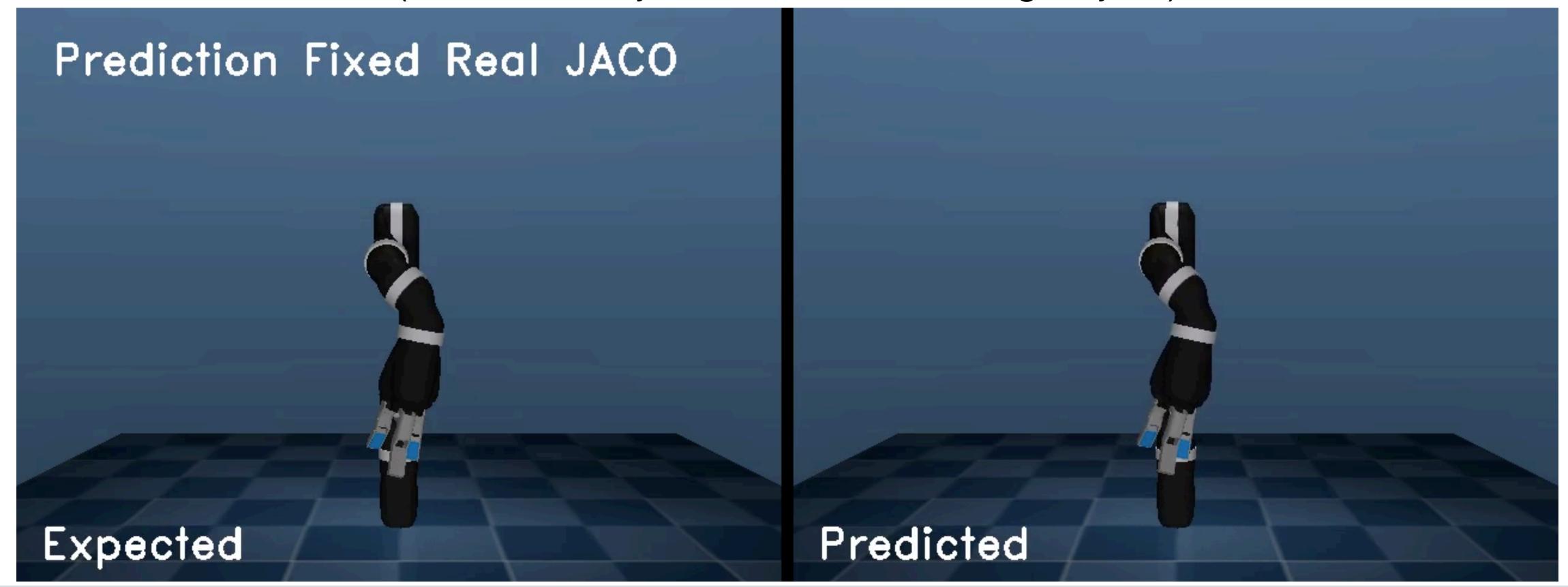


GN forward model: Real JACO data

Recurrent graph network

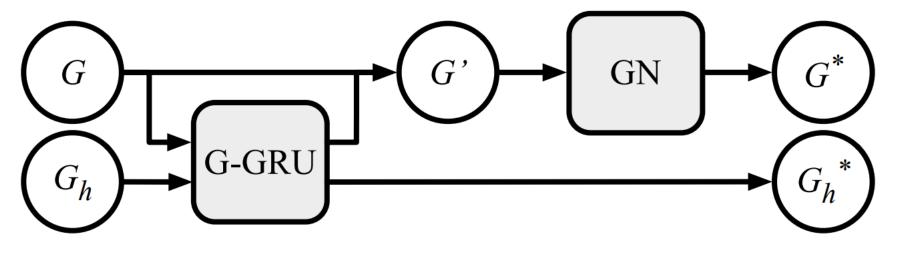


(Real JACO trajectories, rendered using Mujoco)

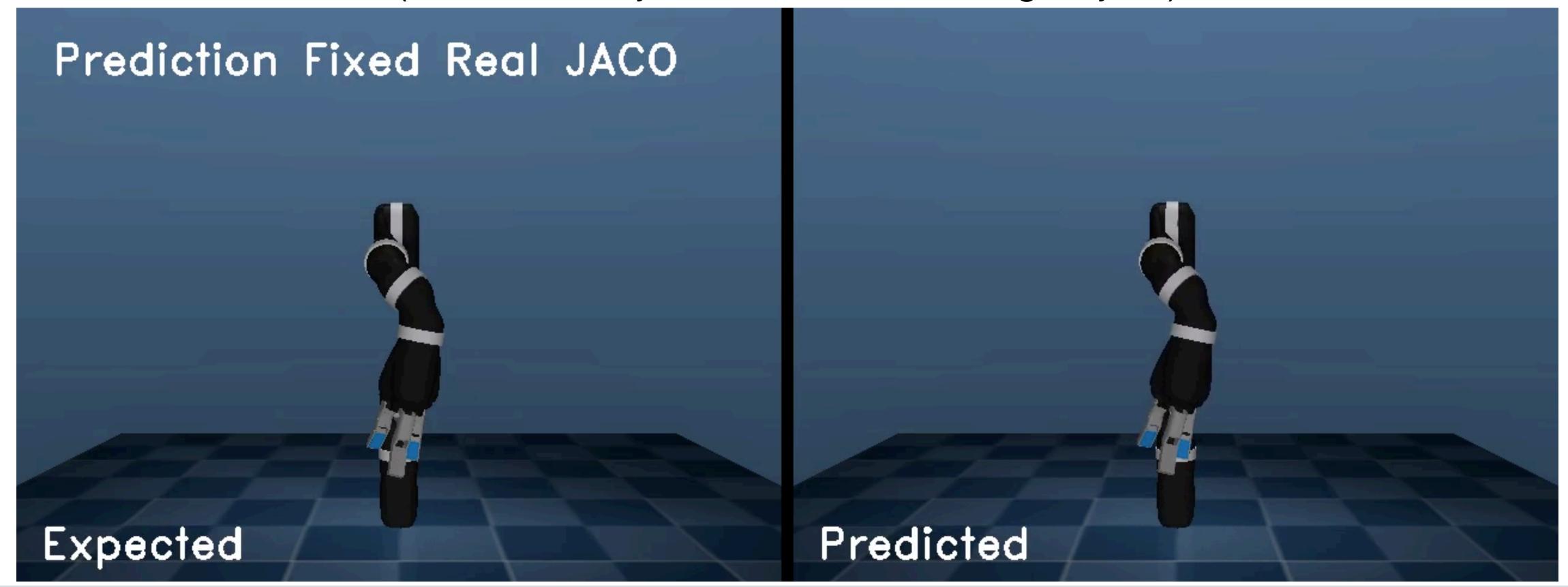


GN forward model: Real JACO data

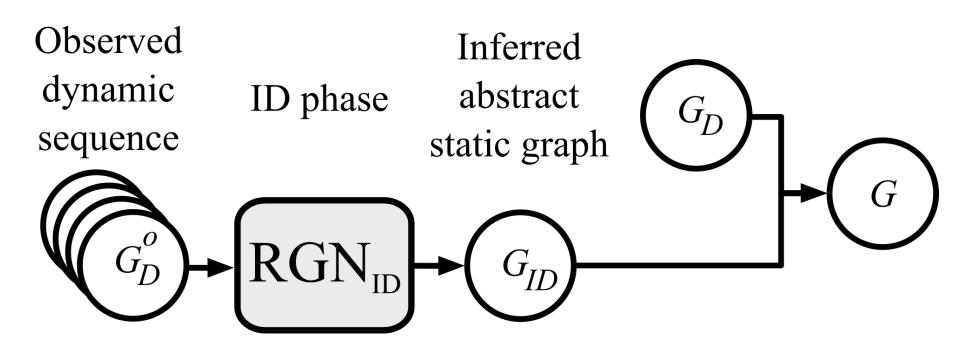
Recurrent graph network



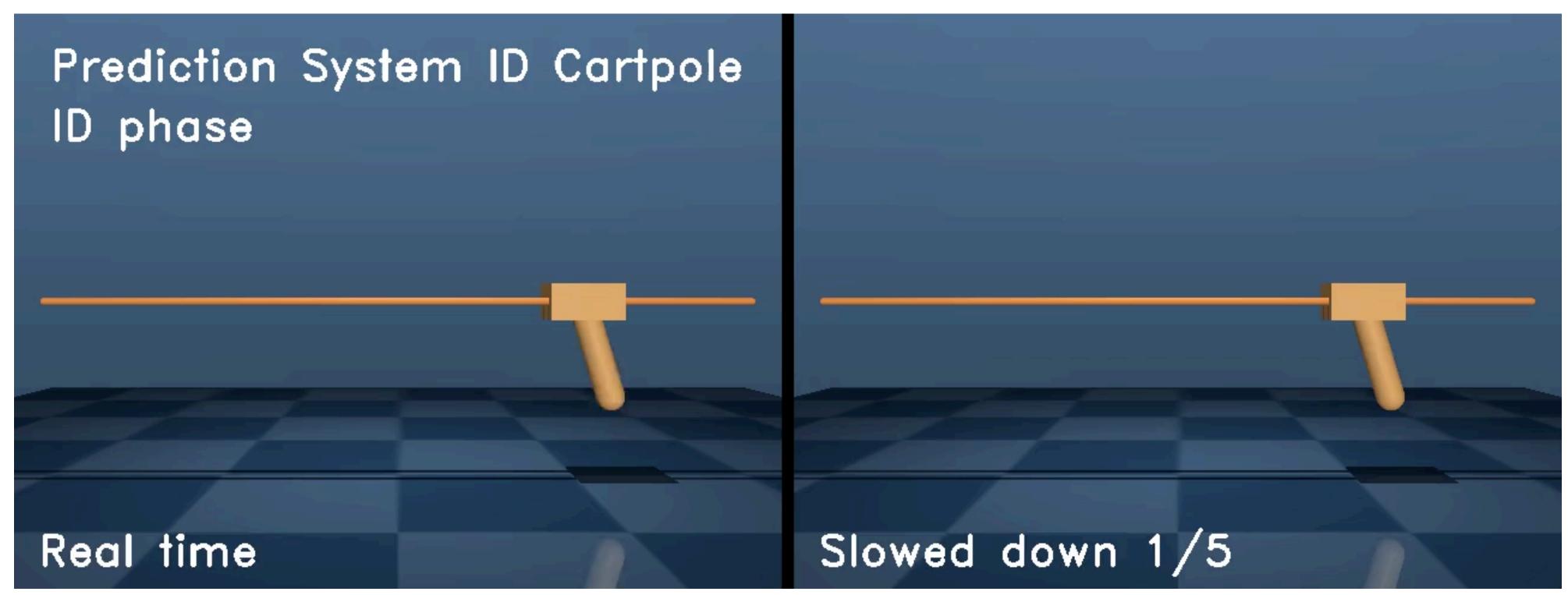
(Real JACO trajectories, rendered using Mujoco)



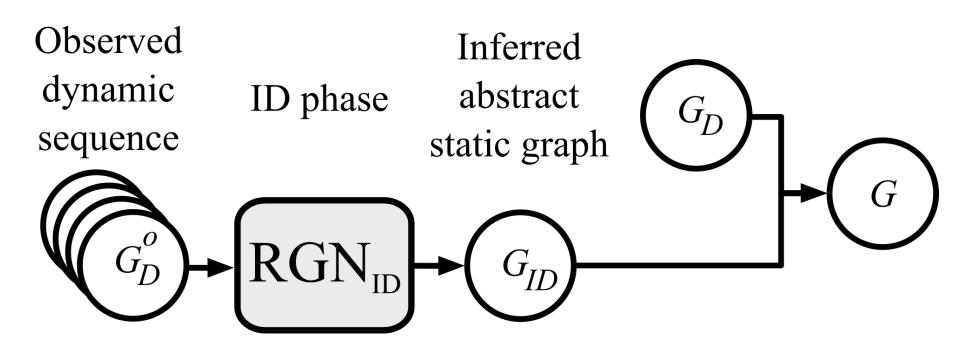
System identification: GN-based inference, under diagnostic control inputs



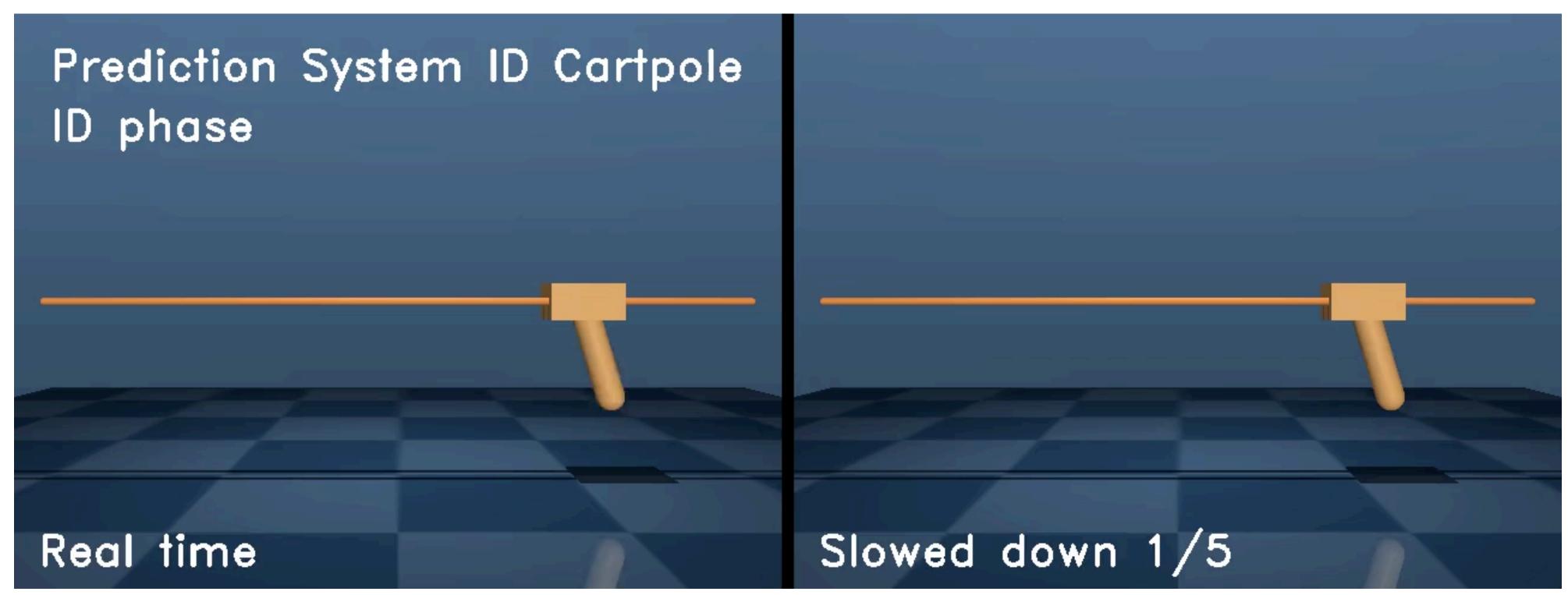
Unobserved system parameters (e.g. mass, length) are implicitly inferred



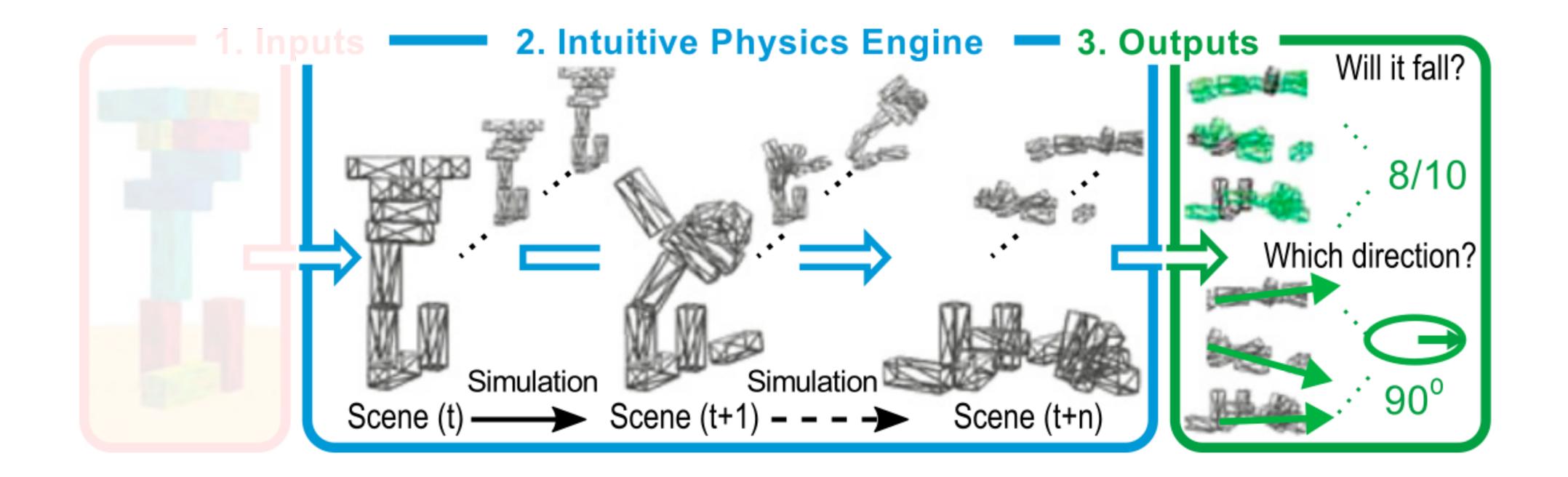
System identification: GN-based inference, under diagnostic control inputs



Unobserved system parameters (e.g. mass, length) are implicitly inferred

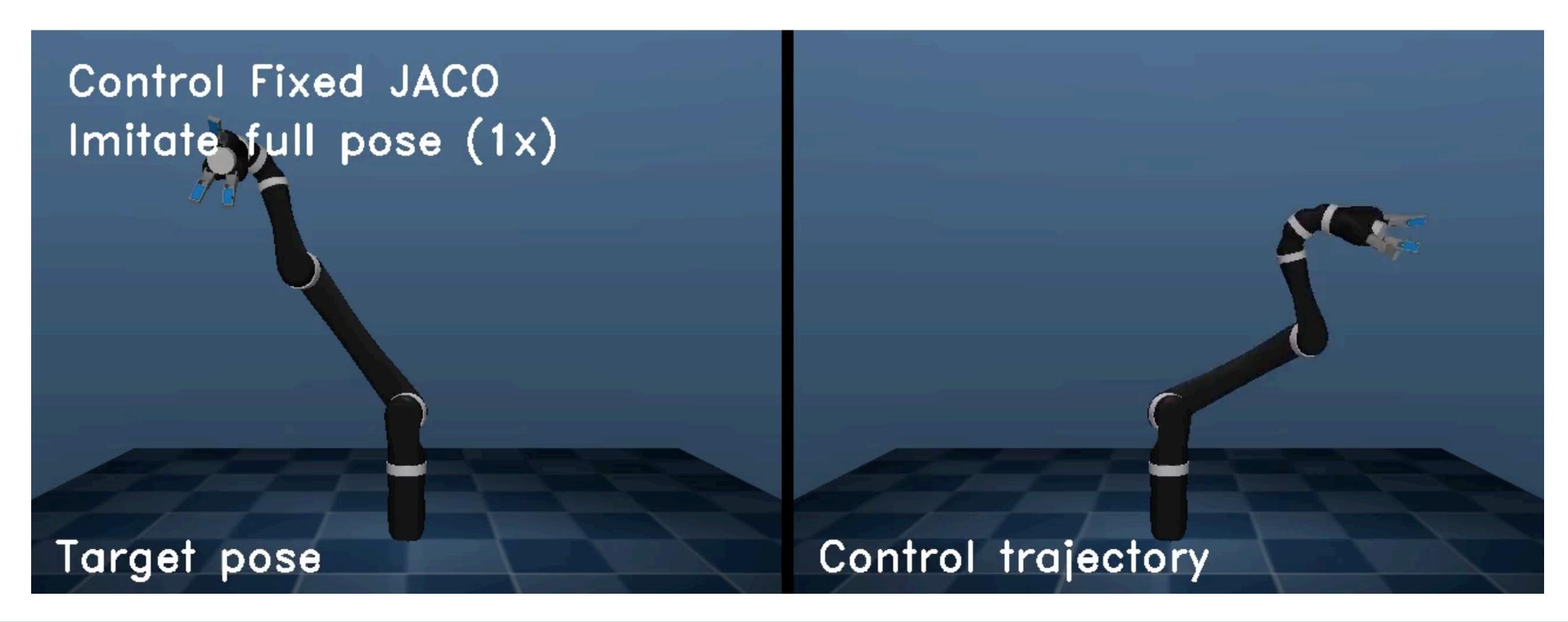


Using learned models for control



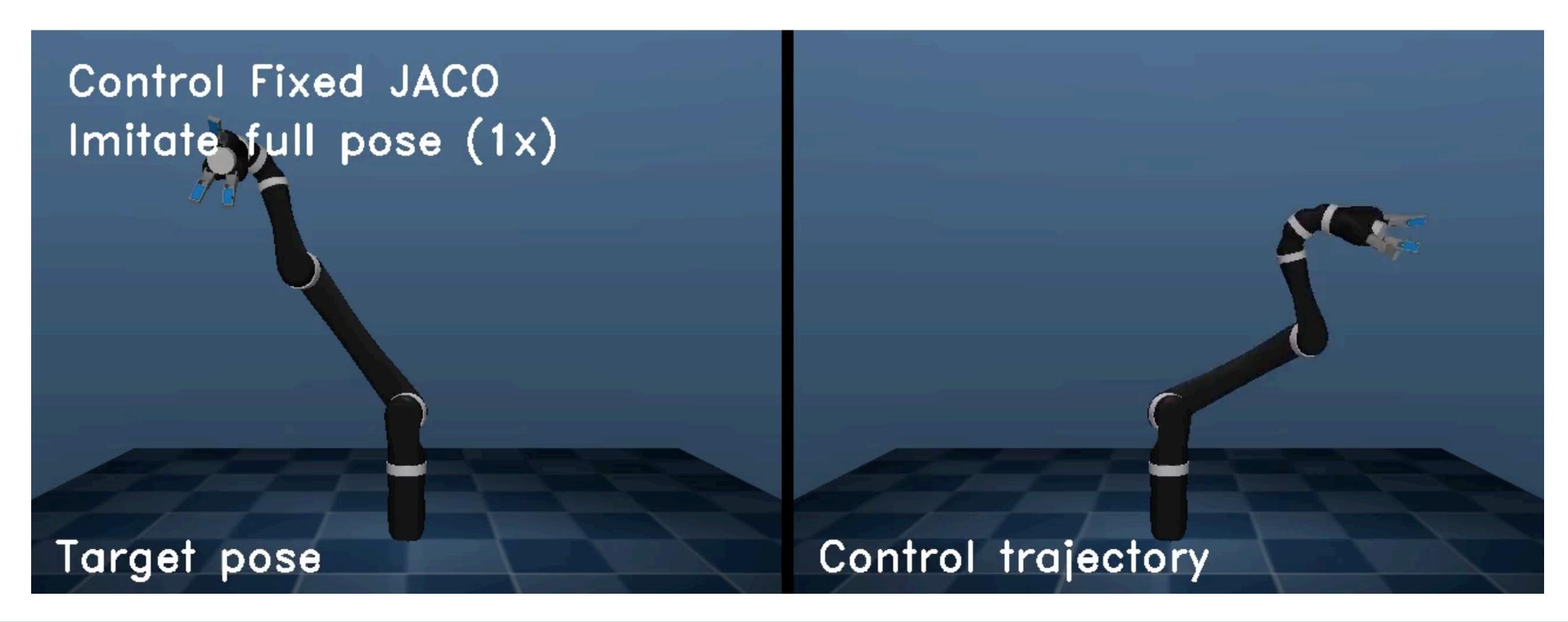
Control: Model-based planning

Trajectory optimization: the GN-based forward model is differentiable, so we can backpropagate through it, and find a sequence of actions that maximize reward

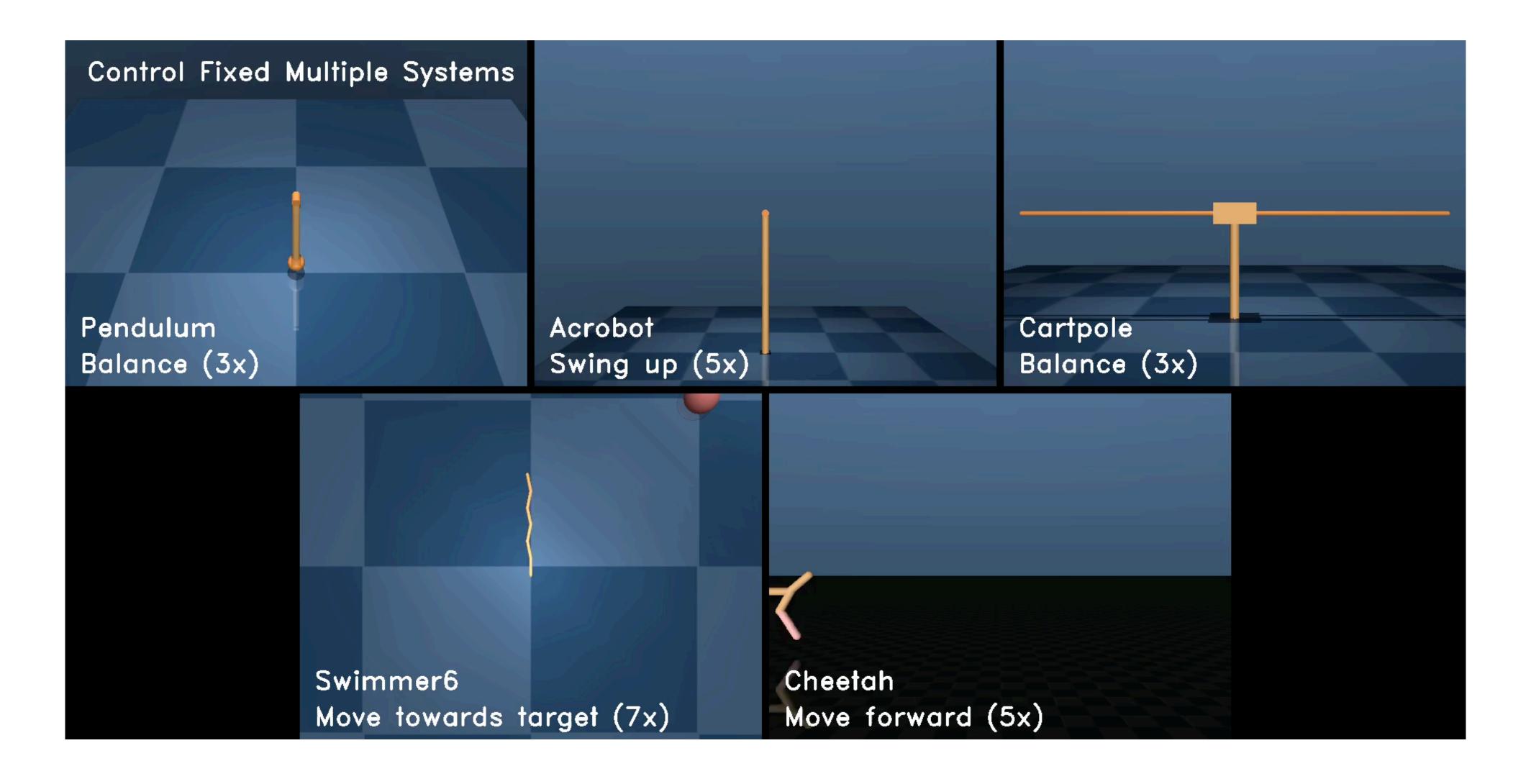


Control: Model-based planning

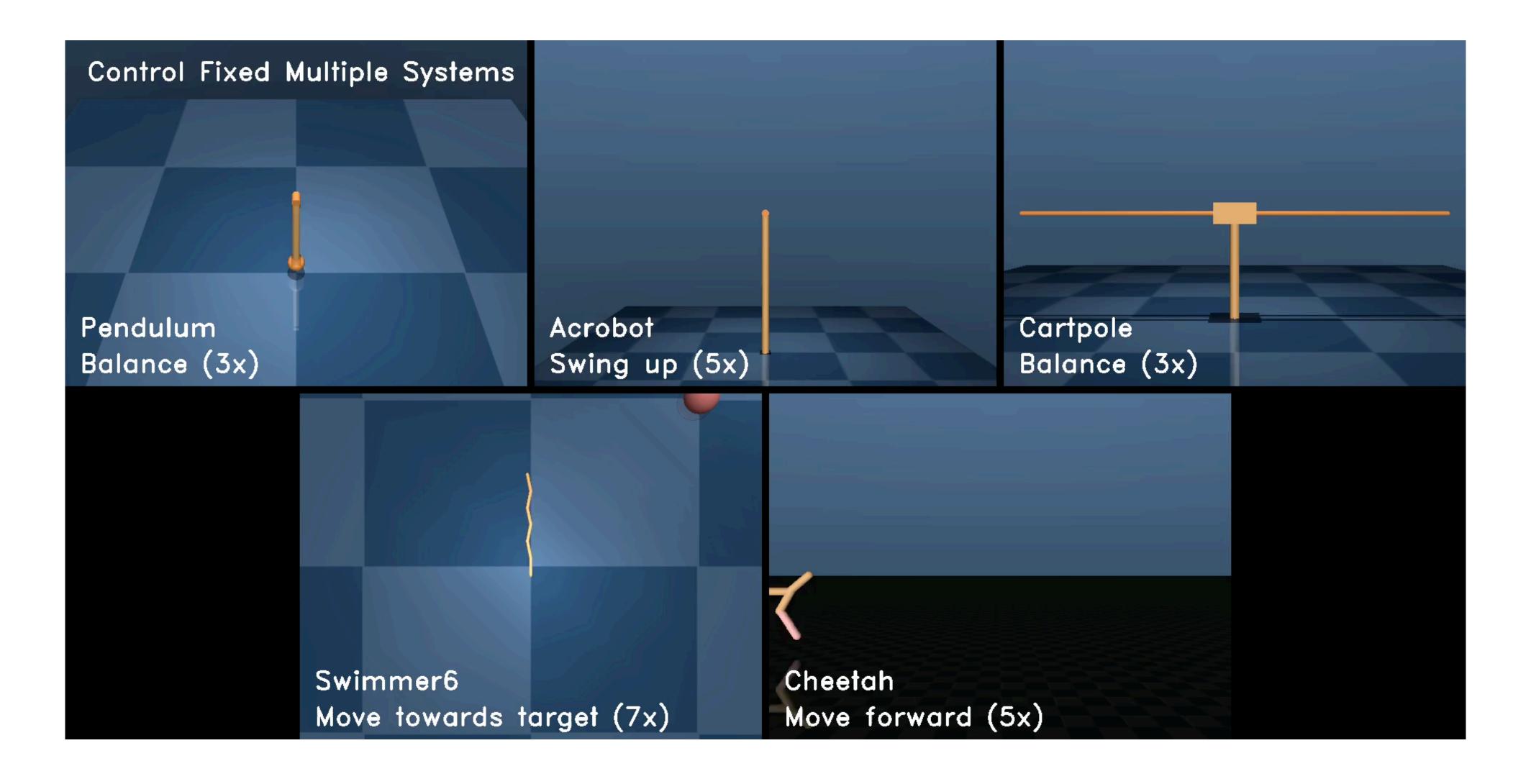
Trajectory optimization: the GN-based forward model is differentiable, so we can backpropagate through it, and find a sequence of actions that maximize reward



Control: Multiple systems via a single model



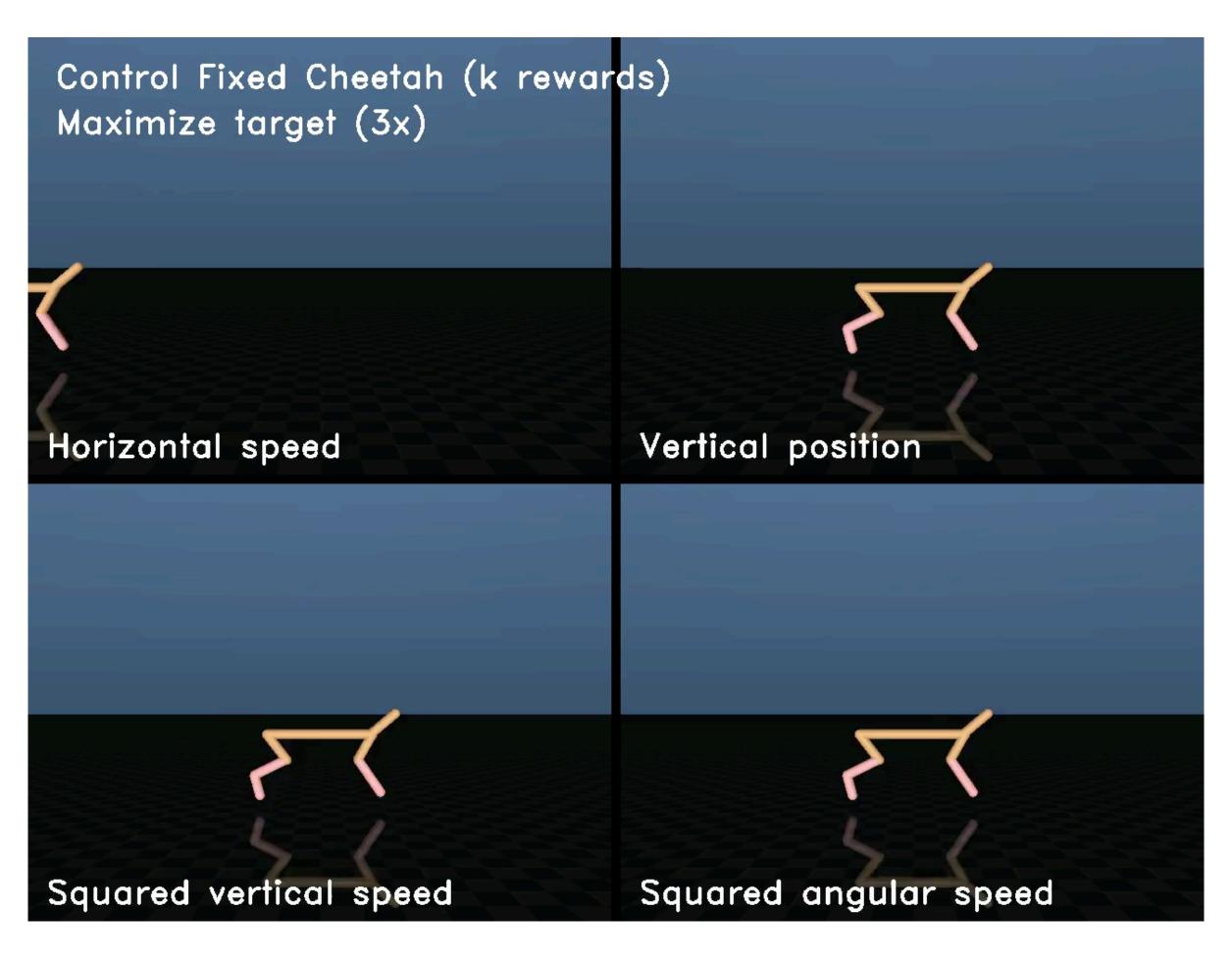
Control: Multiple systems via a single model

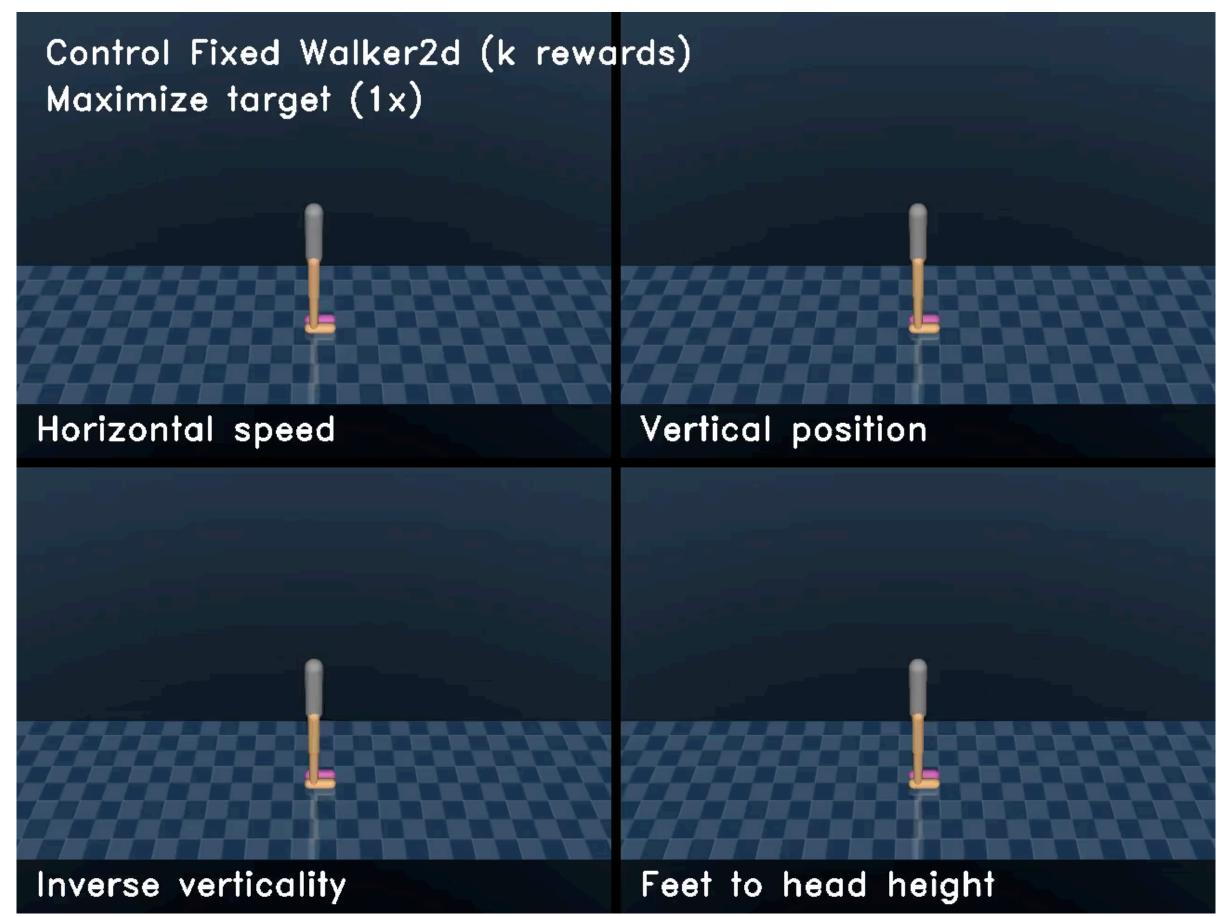


Control: Zero-shot control

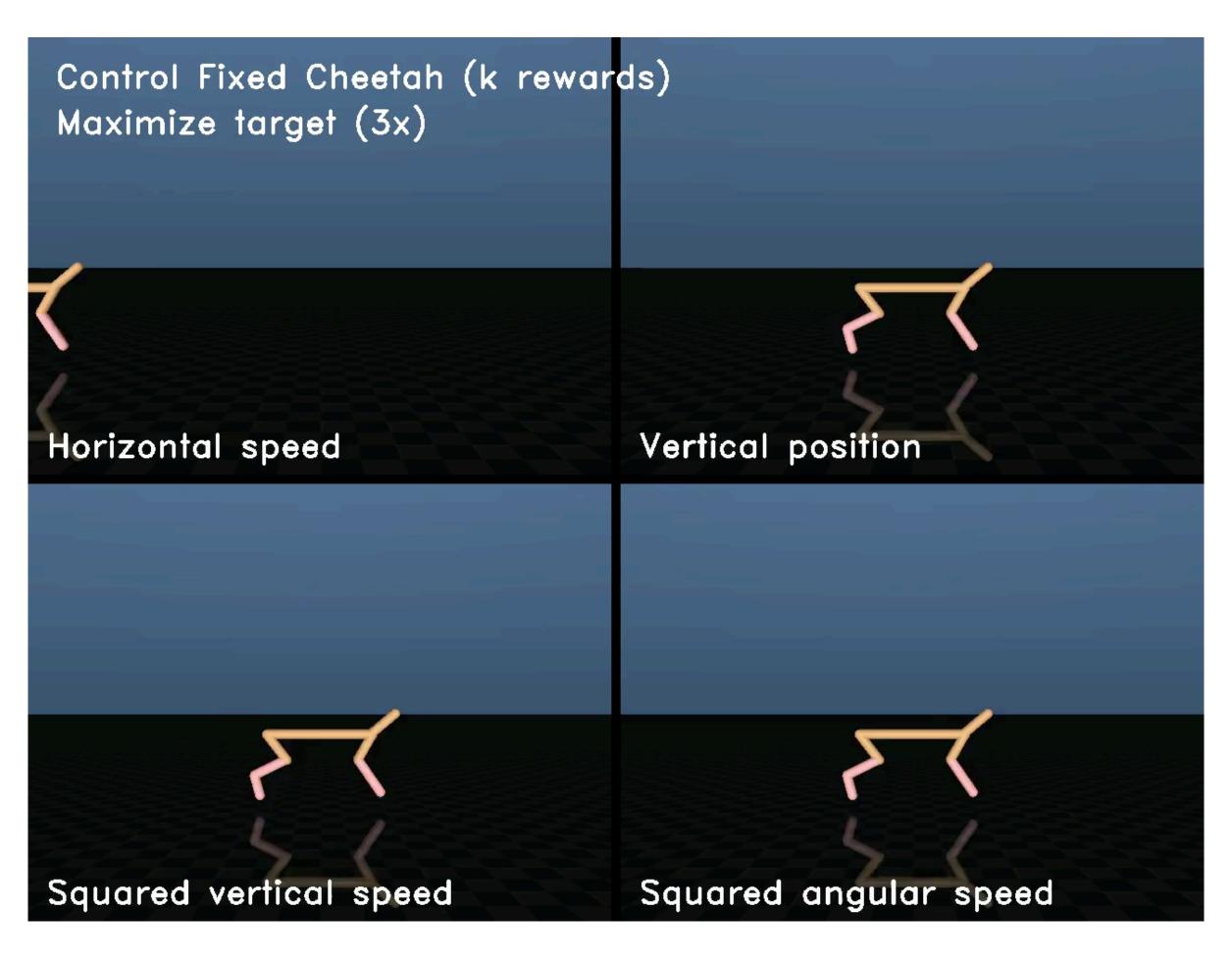
Control: Zero-shot control

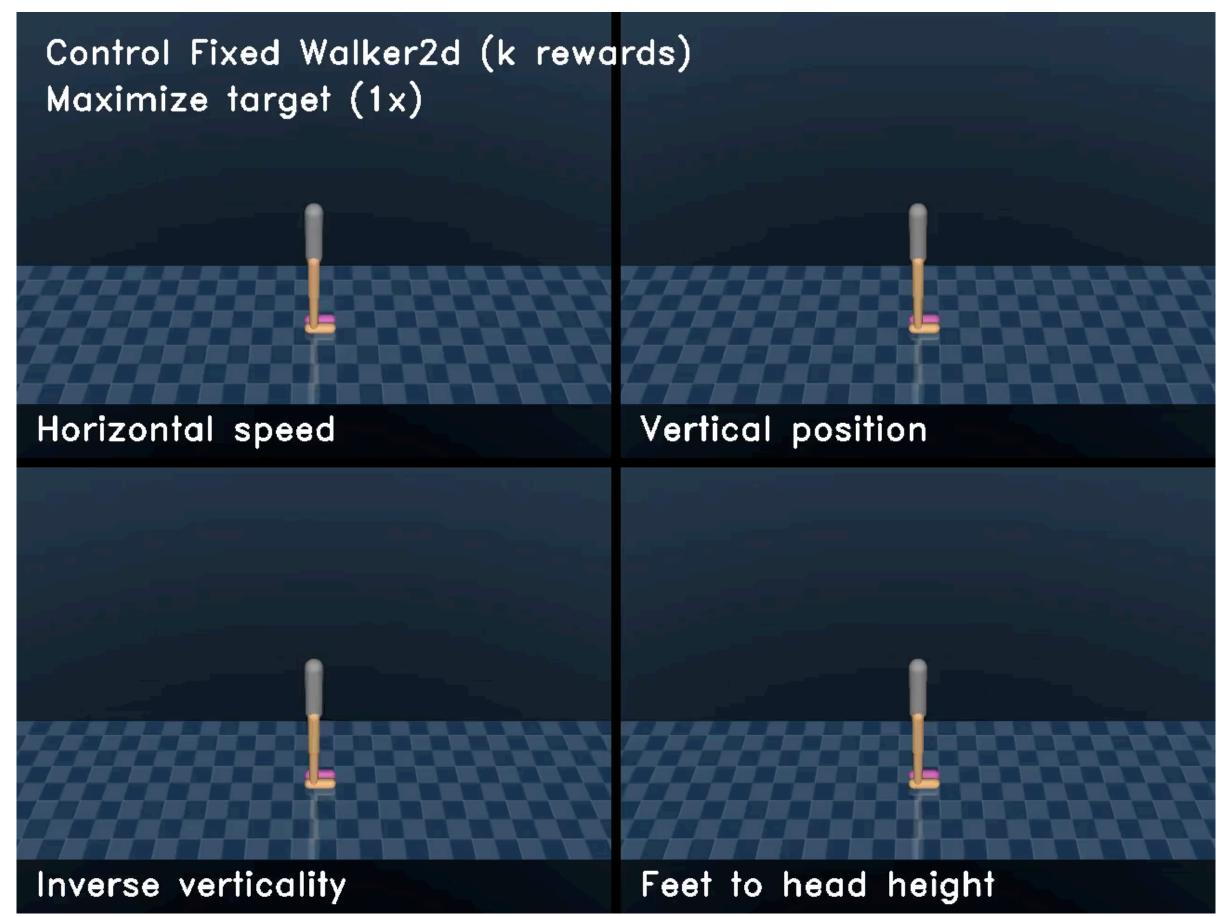
Control: Multiple reward functions



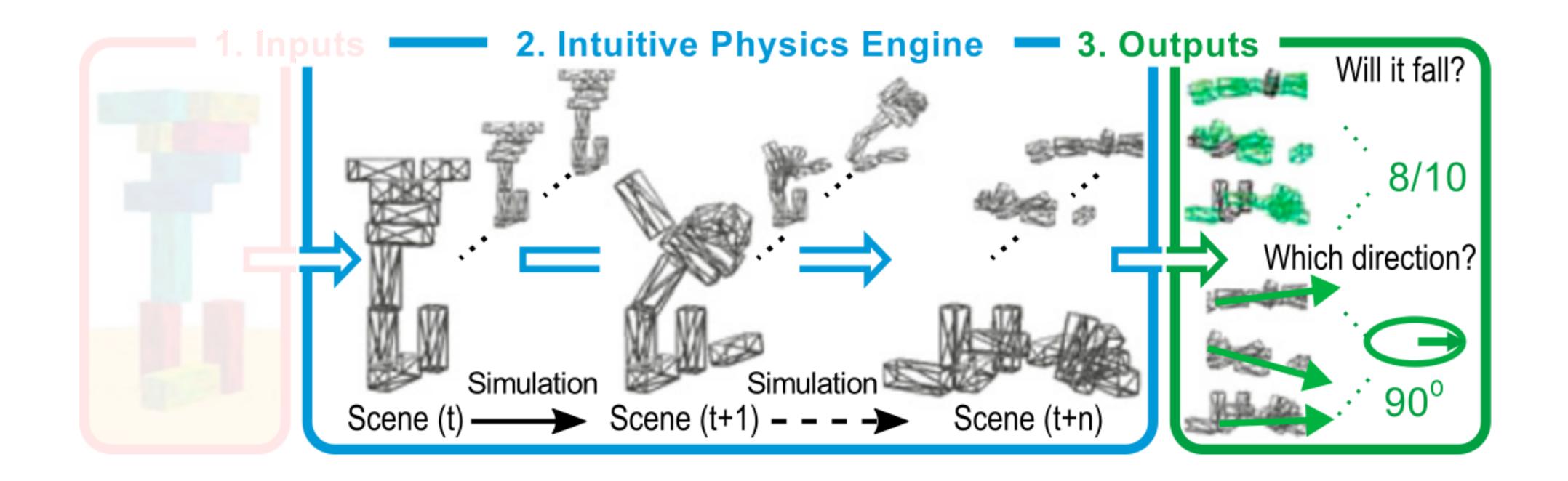


Control: Multiple reward functions

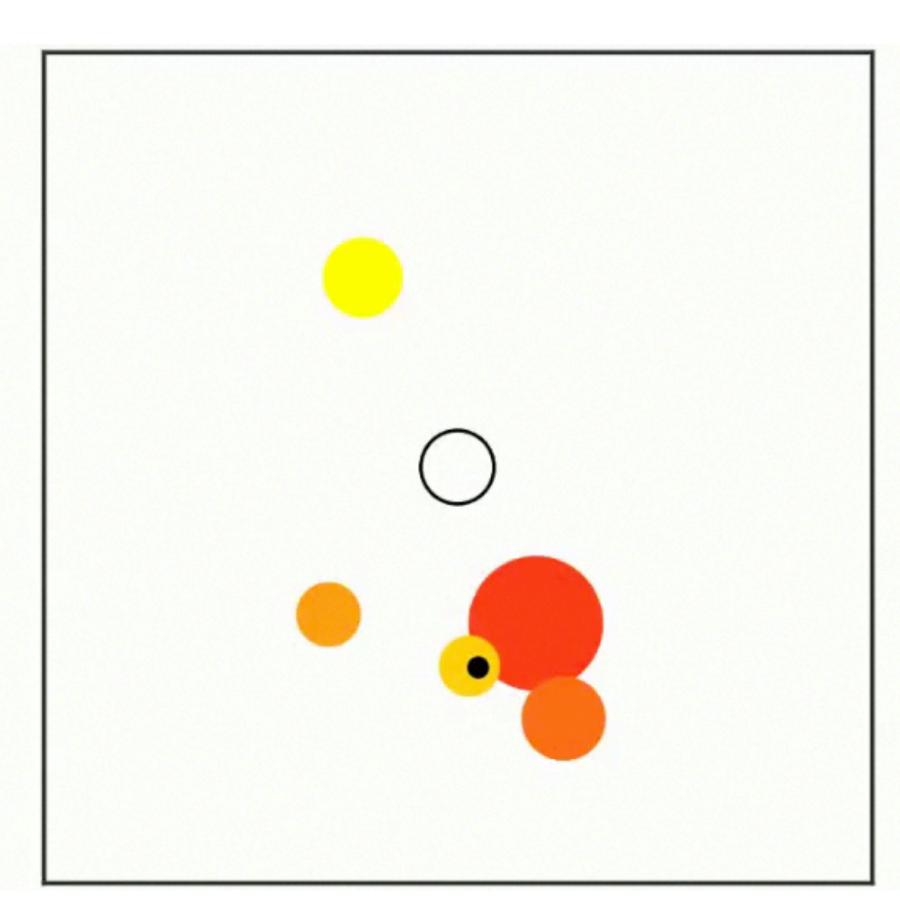




Learning to use mental simulation



Learning to use mental simulation "Imagination-based metacontroller"



"Spaceship task":

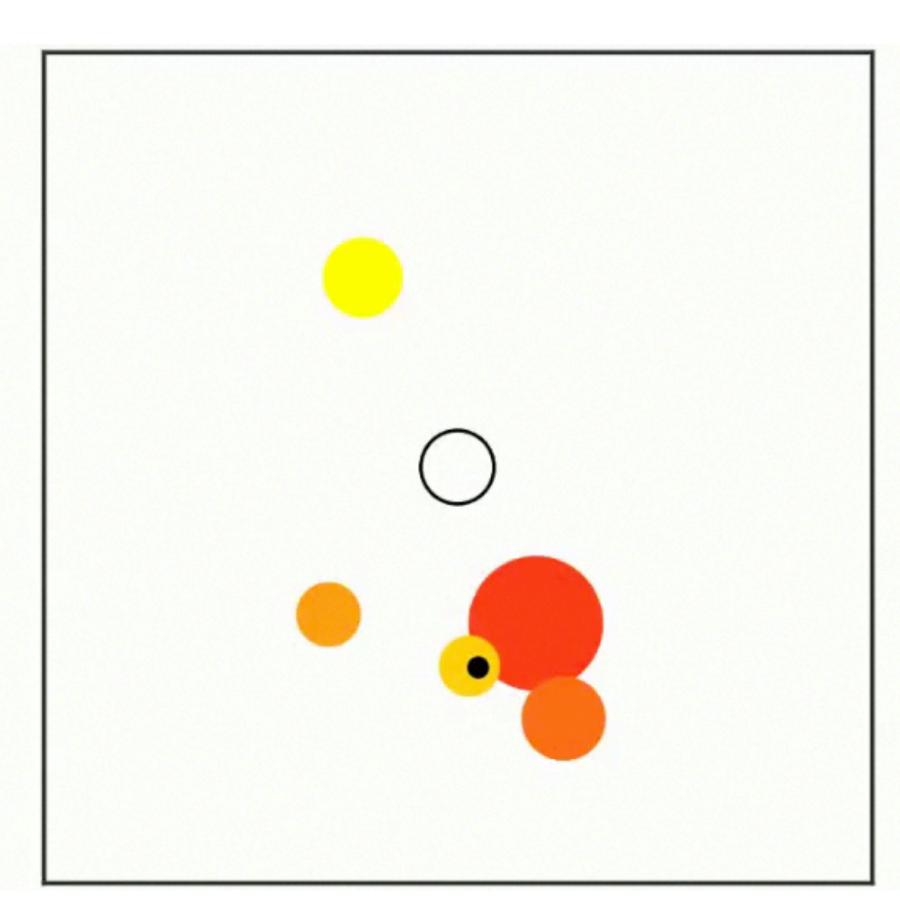
- Navigate to your home planet by choosing a force vector
- Challenging because the planets exert gravity

The agent learns 3 components:

- 1. Action policy (via stochastic value gradients (Heess et al. 2015))
- 2. GN-based forward model (via supervised 1-step training)
- 3. Internal strategy for using imagination to test potential actions before selecting one to execute (via REINFORCE)

Hamrick et al., 2017, ICLR

Learning to use mental simulation "Imagination-based metacontroller"



"Spaceship task":

- Navigate to your home planet by choosing a force vector
- Challenging because the planets exert gravity

The agent learns 3 components:

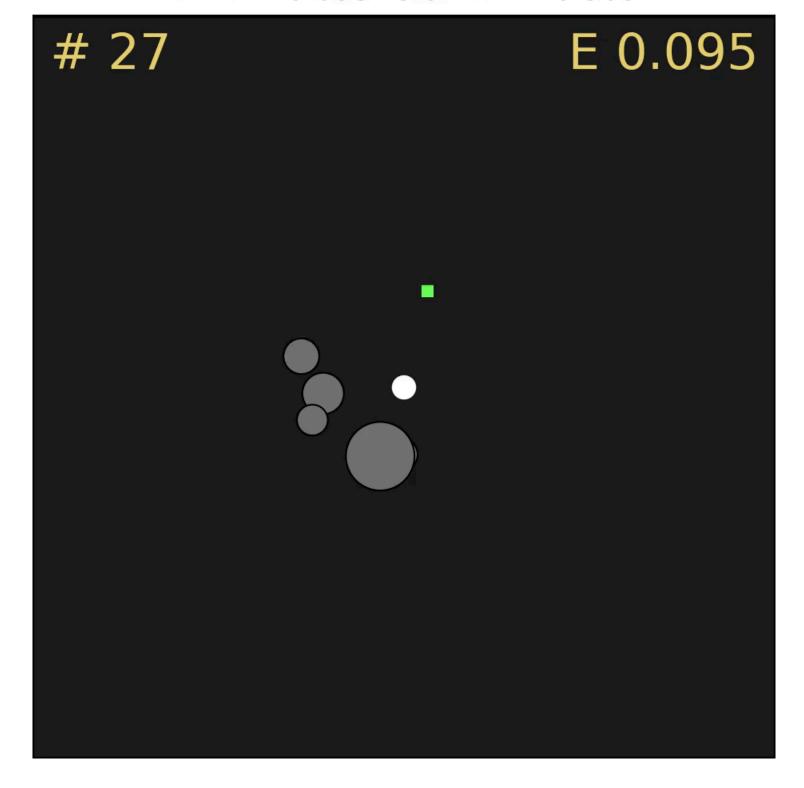
- 1. Action policy (via stochastic value gradients (Heess et al. 2015))
- 2. GN-based forward model (via supervised 1-step training)
- 3. Internal strategy for using imagination to test potential actions before selecting one to execute (via REINFORCE)

Hamrick et al., 2017, ICLR

Learning to use mental simulation "Imagination-based planner"

55. L 0.041. C 0.026. T 0.067

27. L 0.095. C 0.414. T 0.509



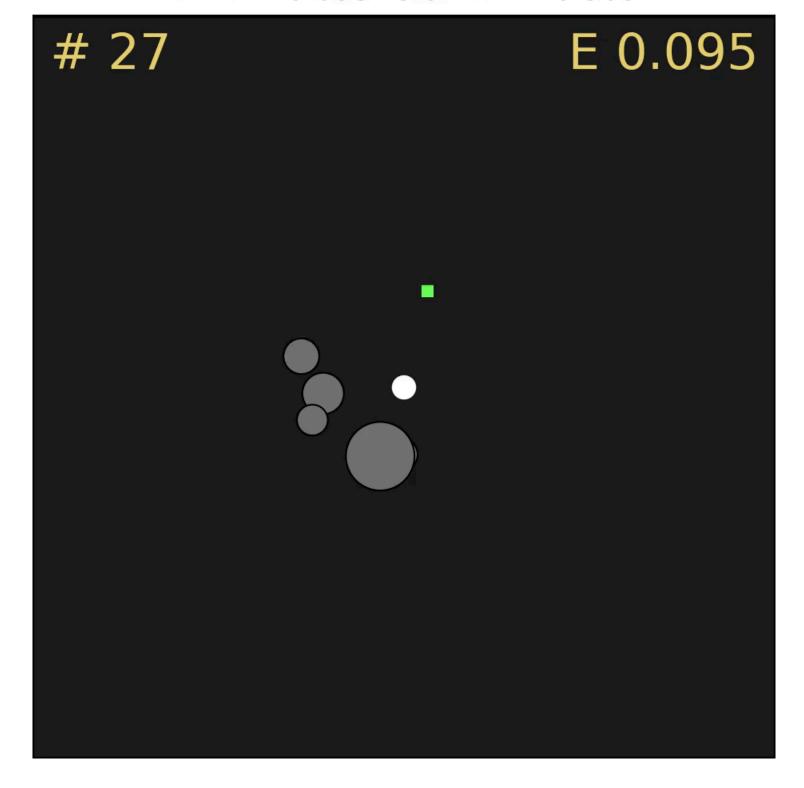
- Red: real actions
- Blue: 1 step of imagination
- Green: 2+ steps of imagination

Pascanu et al., 2017, arXiv

Learning to use mental simulation "Imagination-based planner"

55. L 0.041. C 0.026. T 0.067

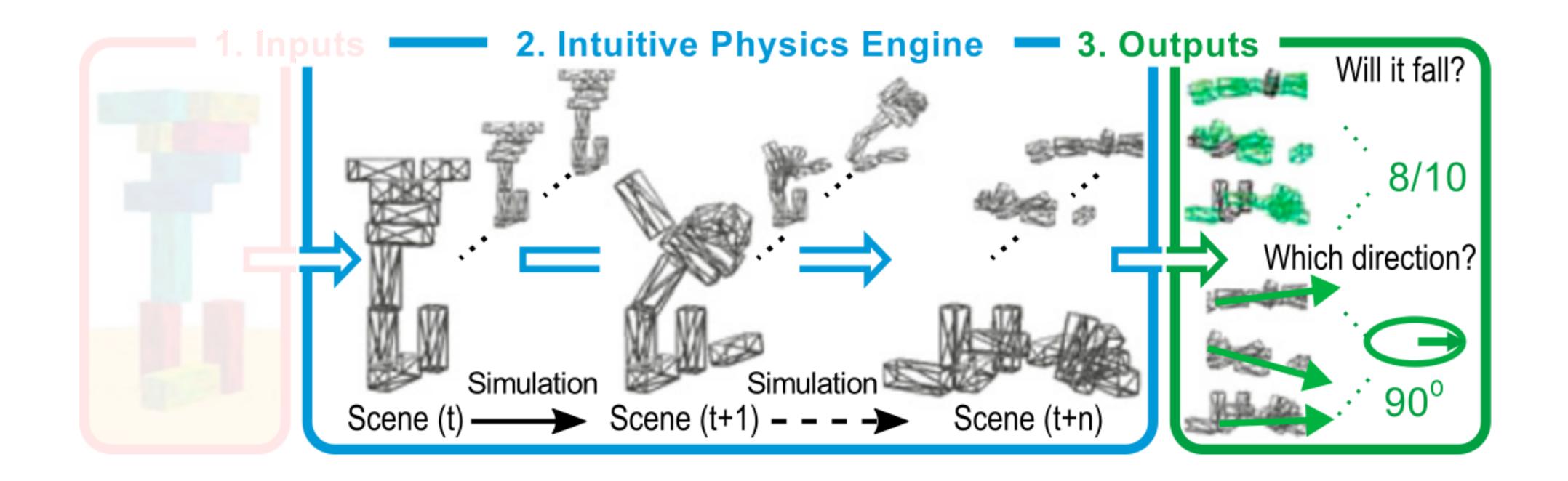
27. L 0.095. C 0.414. T 0.509

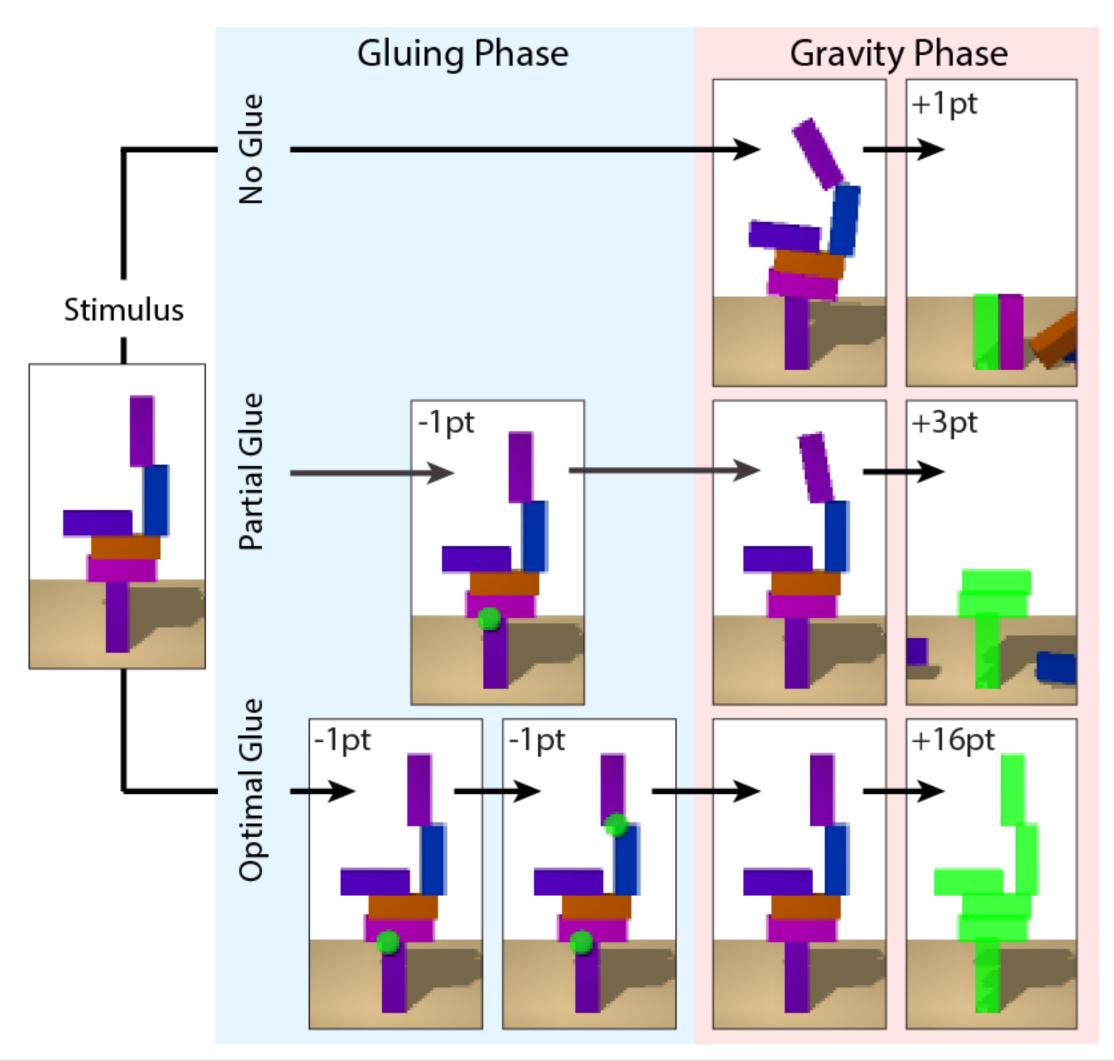


- Red: real actions
- Blue: 1 step of imagination
- Green: 2+ steps of imagination

Pascanu et al., 2017, arXiv

Graph-structured model-free policies



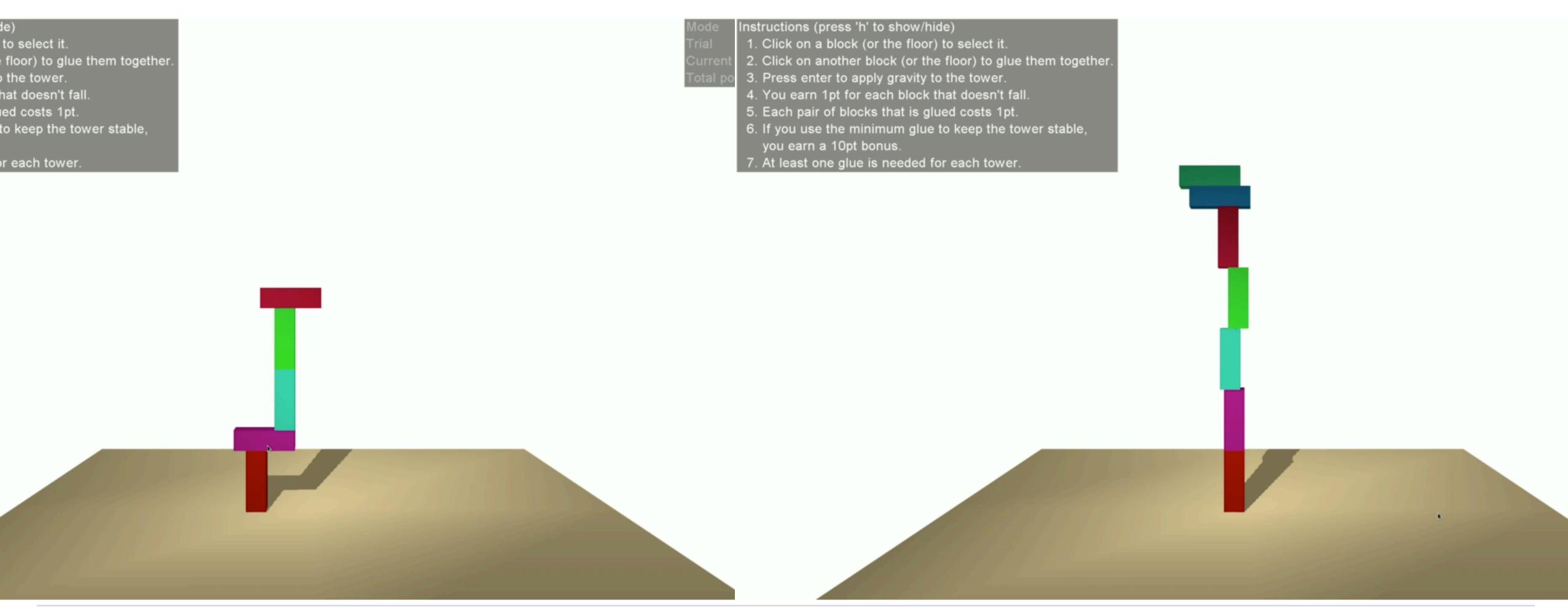


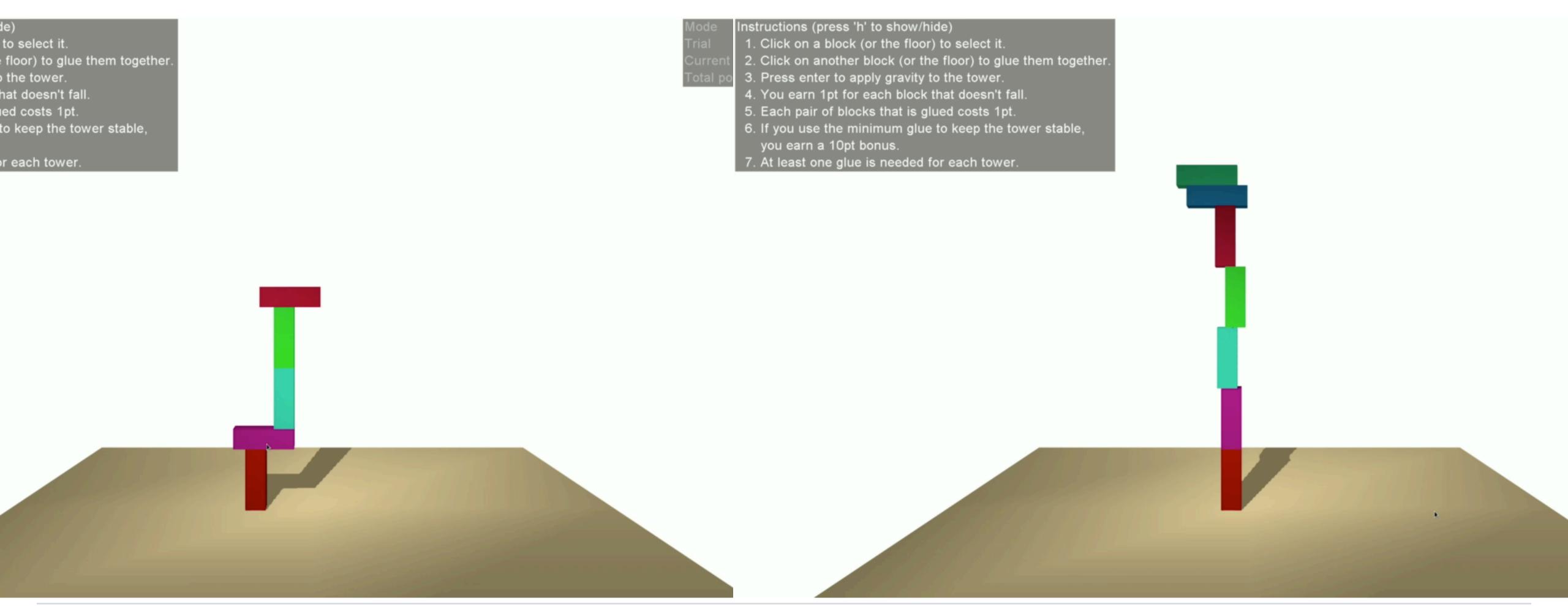
Jess Hamrick, Kelsey Allen, Victor Bapst, Tina Zhu, Kevin McKee, Josh Tenenbaum, Peter Battaglia

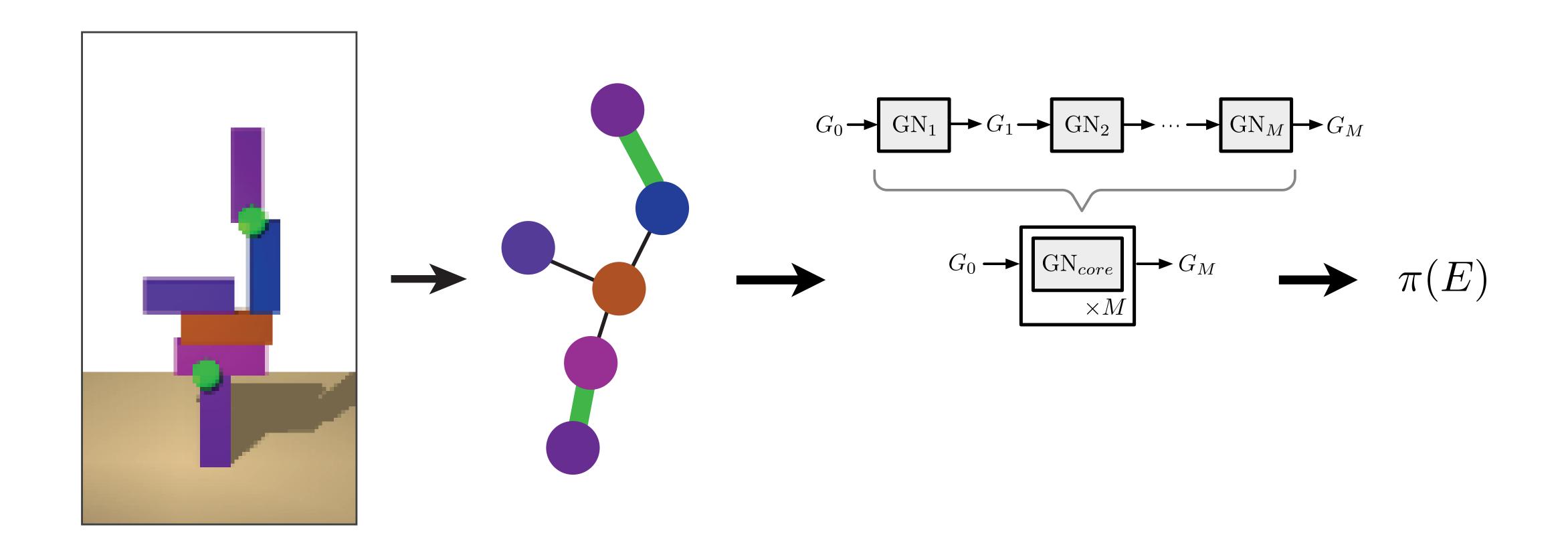
Proc Cog Sci, 2018

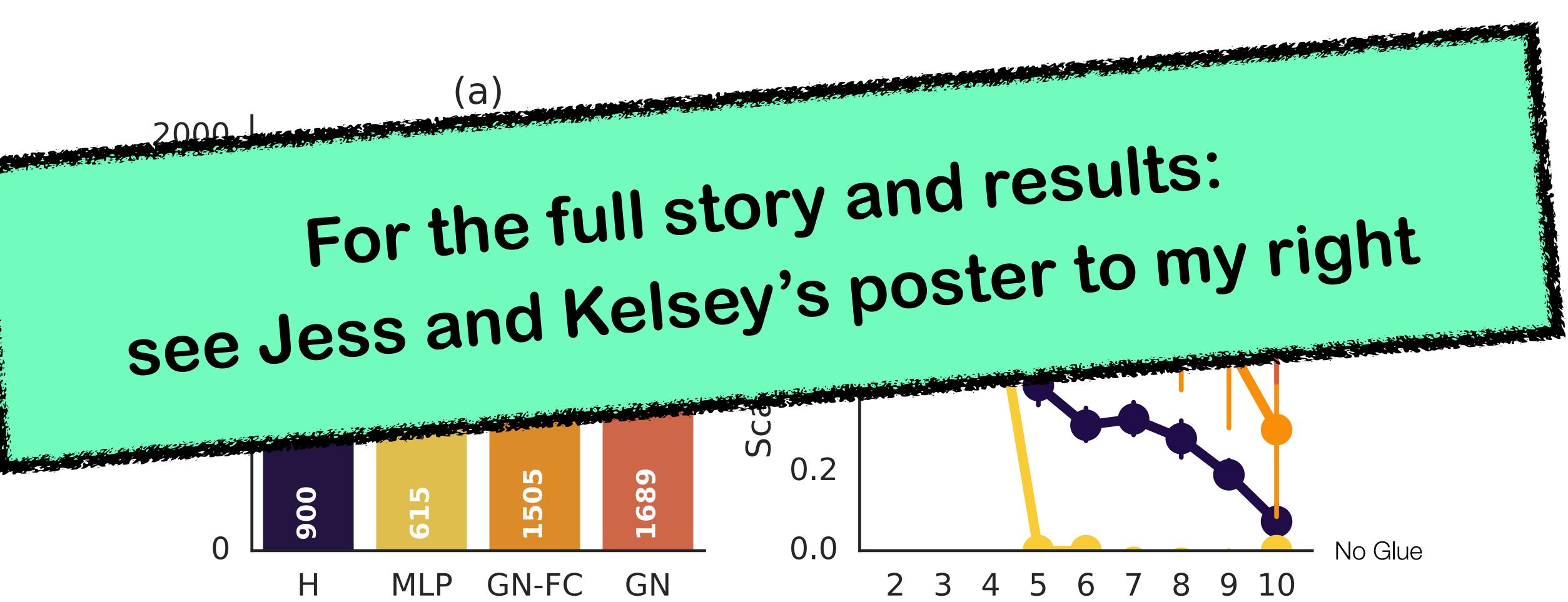
The "glue task"

Goal: Glue blocks together to make the tower stable, using the minimum amount of glue.



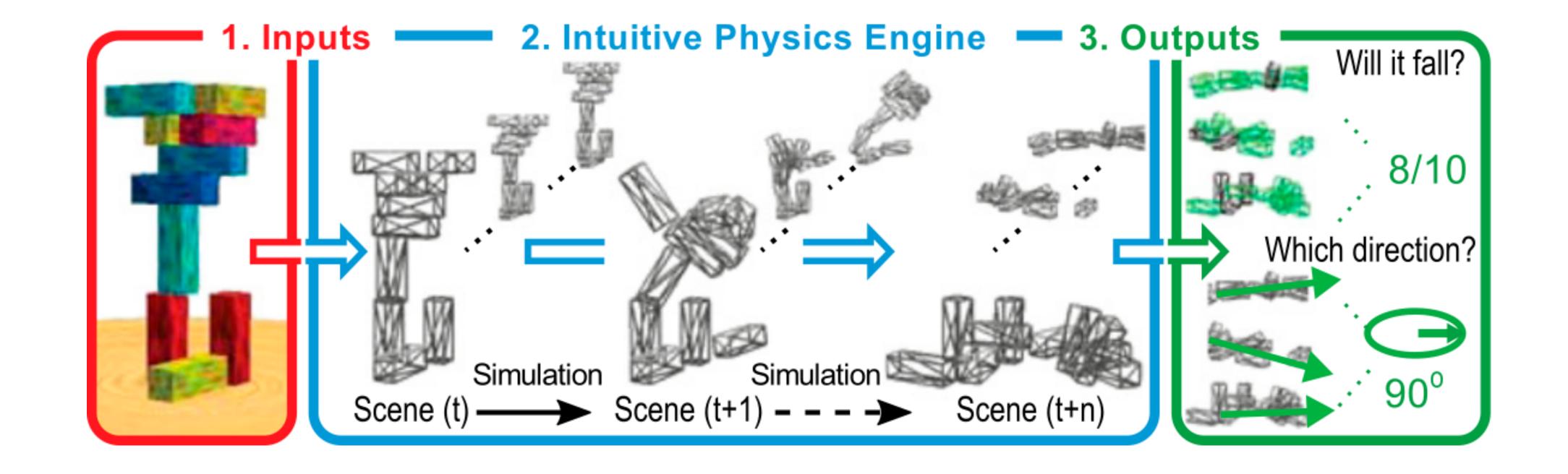




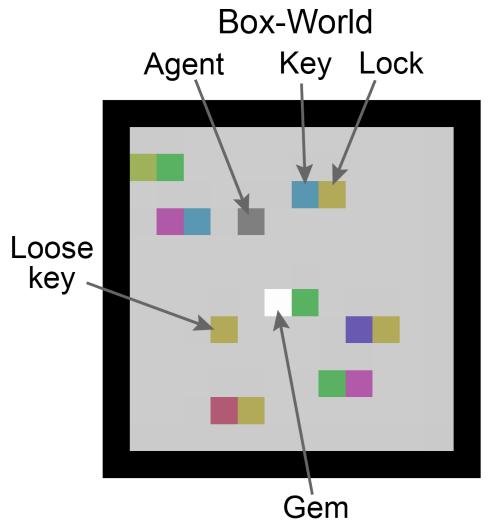


Blocks

Graph-structured representations for model-free RL

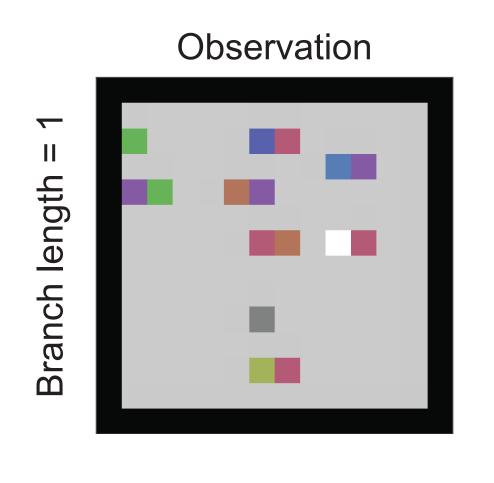


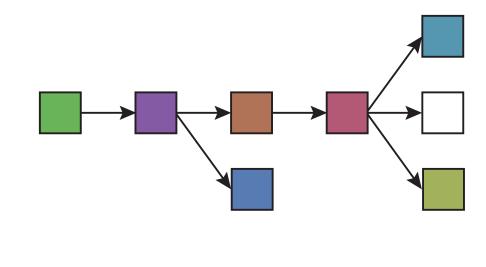
Relational deep reinforcement learning

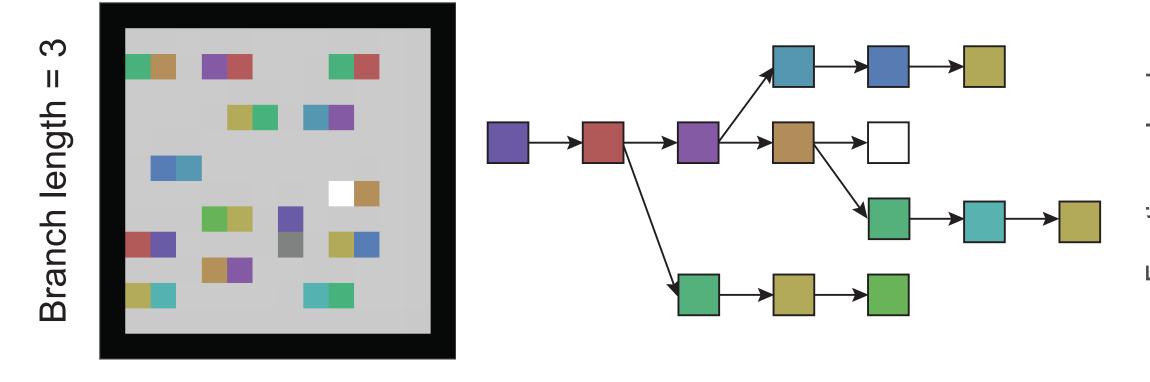


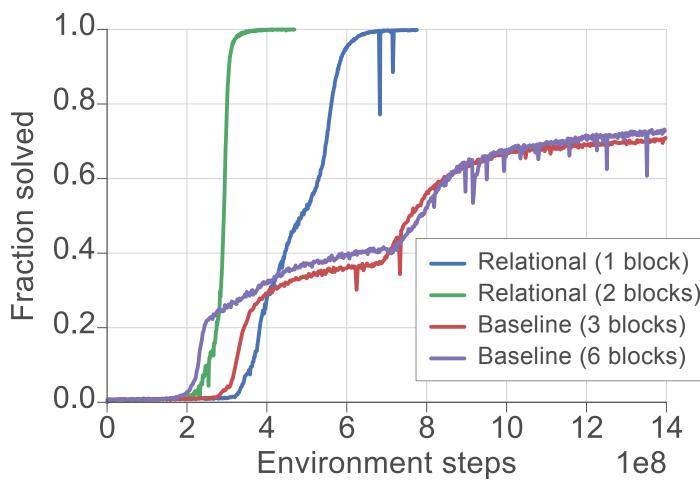
Box-World:

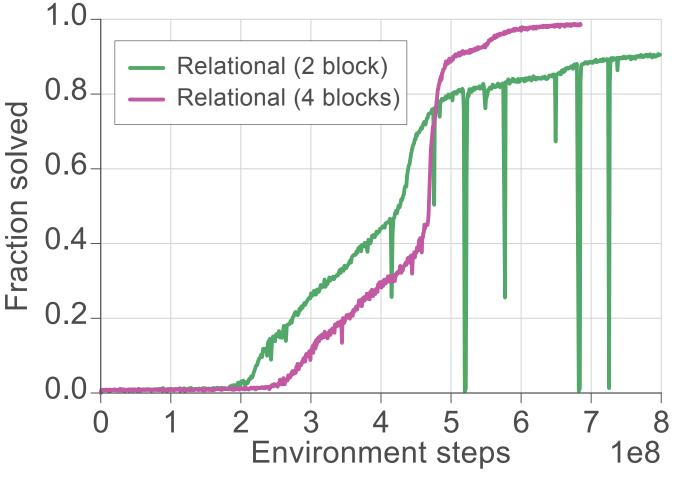
- Acquire gem (white) by opening a sequence of locked boxes
- Model-free (A2C) with self-attention/GN state representation, and message-passing



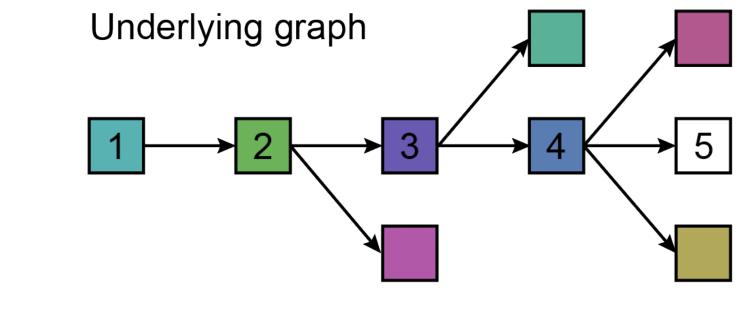




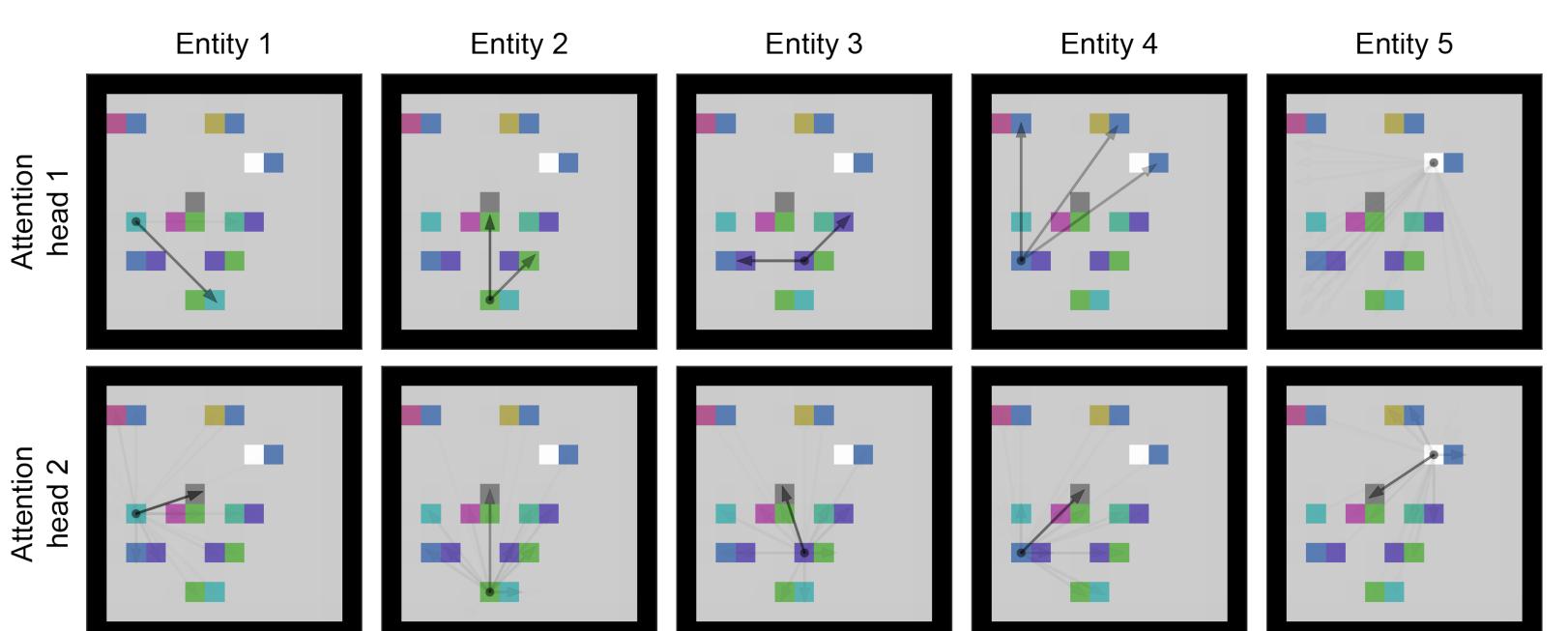




Visualizing the learned representations



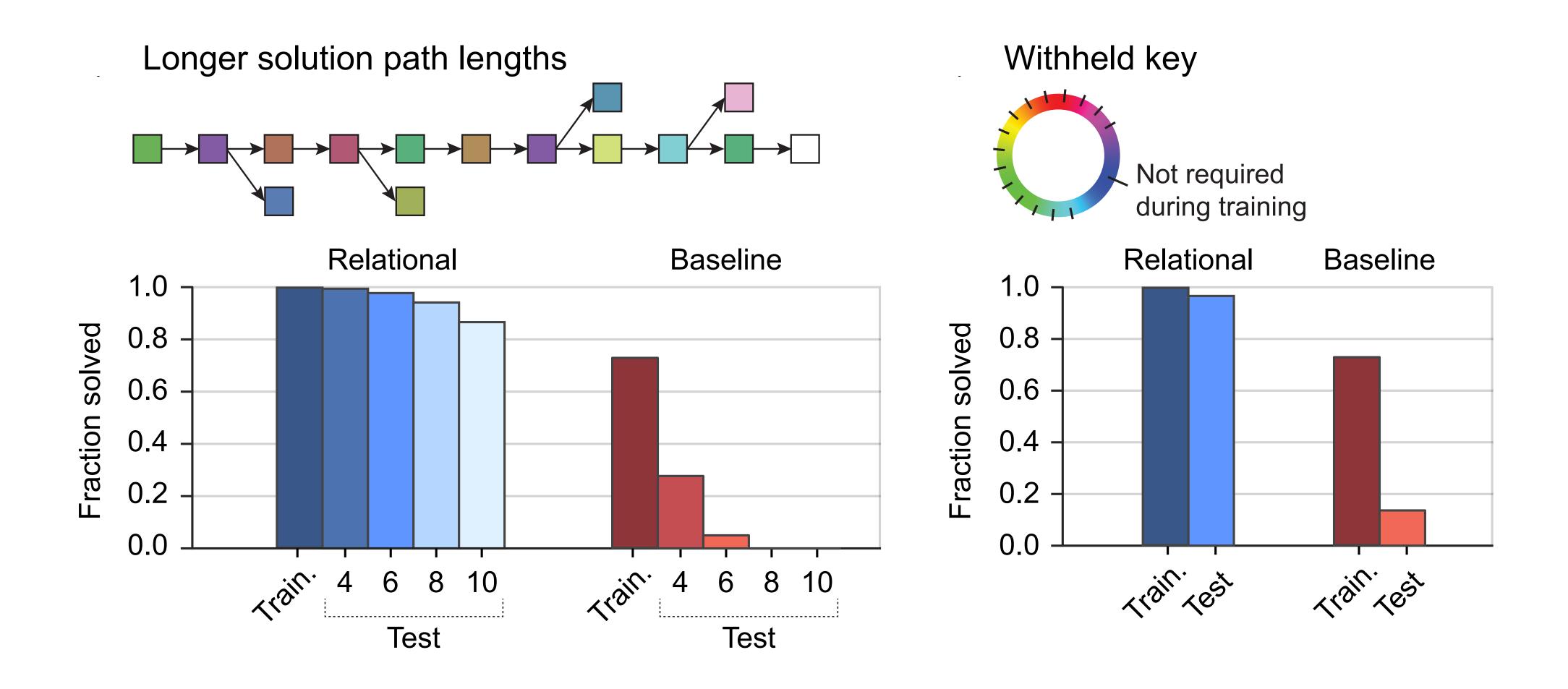
Highest attention values per head



1. Keys <-> locks they can open

2. Avatar <-> keys

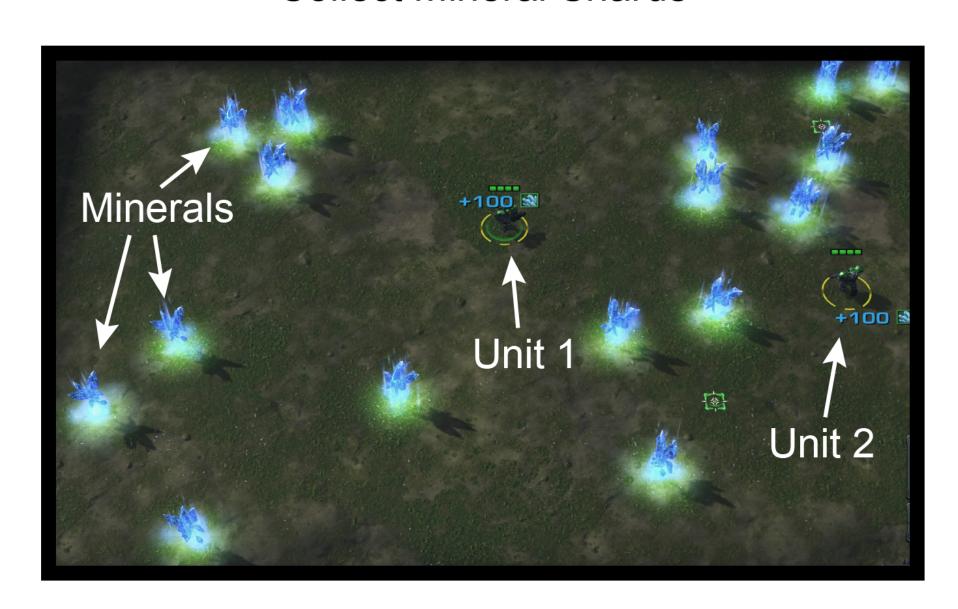
Generalization to longer solutions and withheld keys

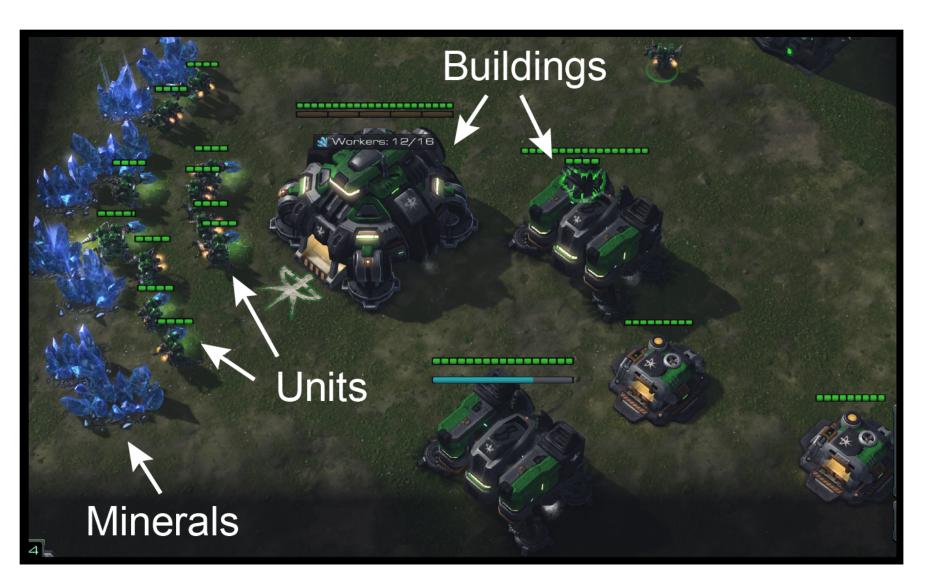


Scales up to StarCraft II mini-games

Collect Mineral Shards

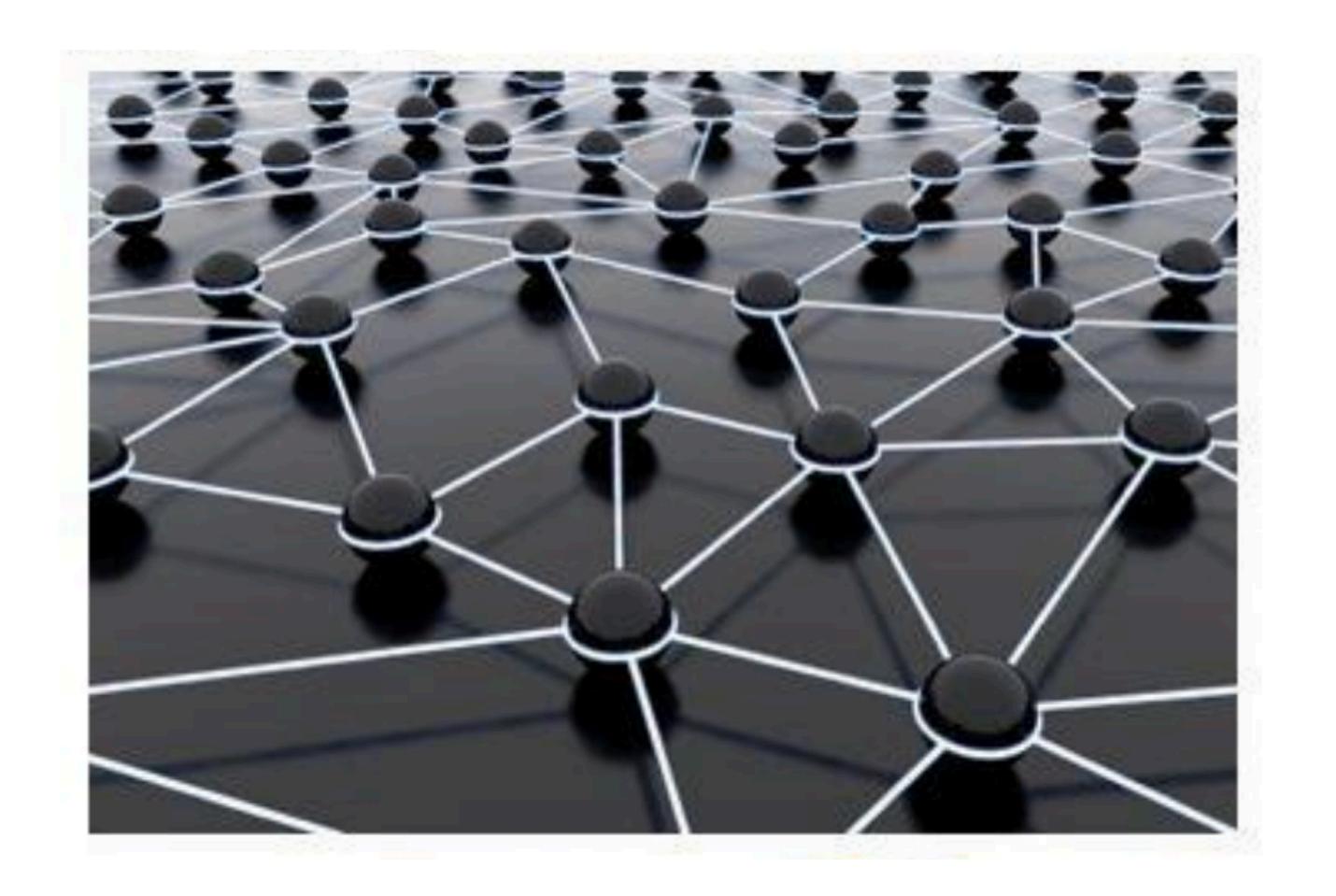
Build Marines





- State-of-the-art in 6 of 7 StarCraft II mini-games
- Beats grandmaster-level in 4 of 7

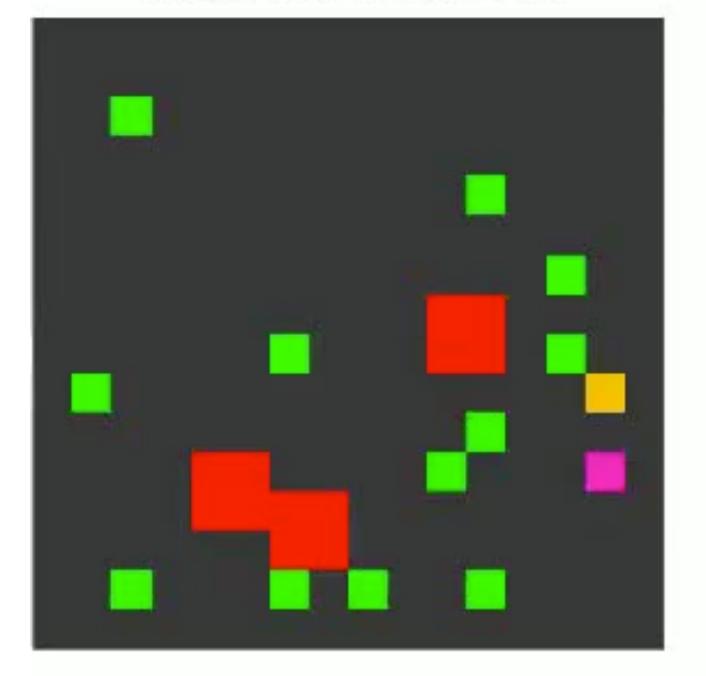
Structured models in multi-agent RL

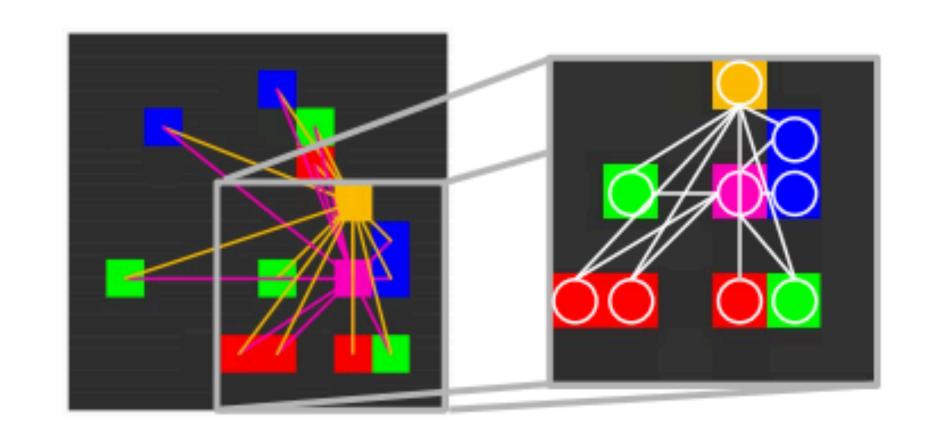


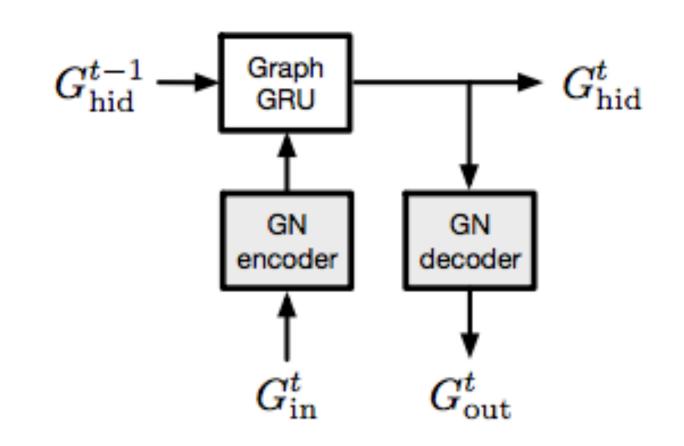
Relational forward models for multi-agent RL

Stag hunt

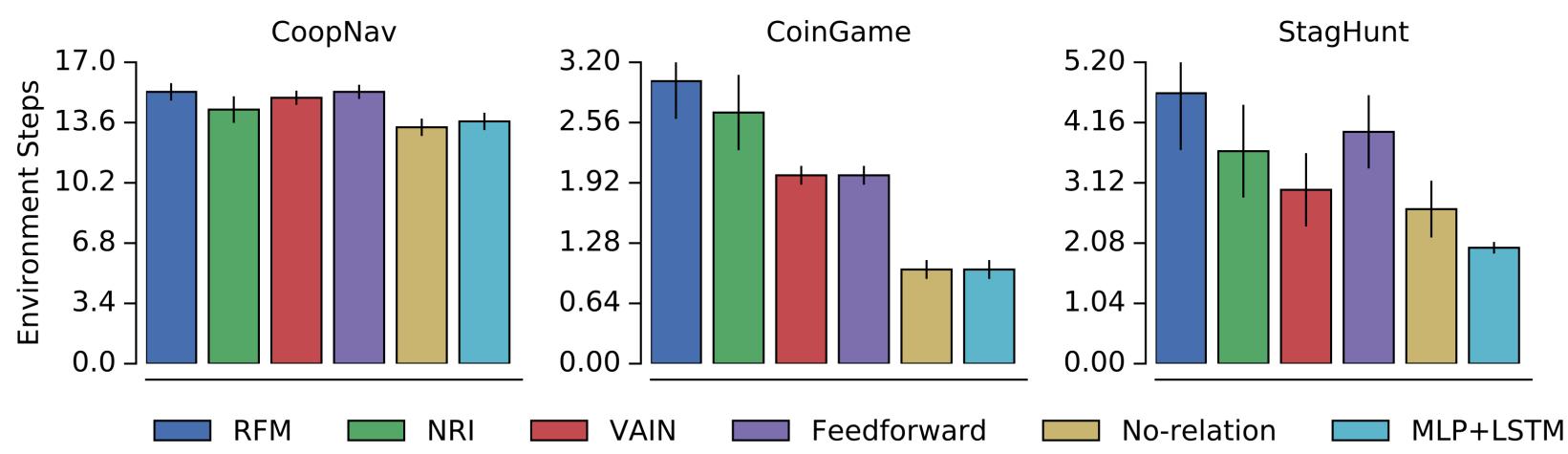
Step 0 with last actions

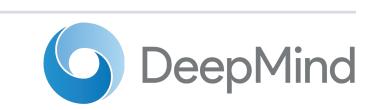






Forward prediction performance

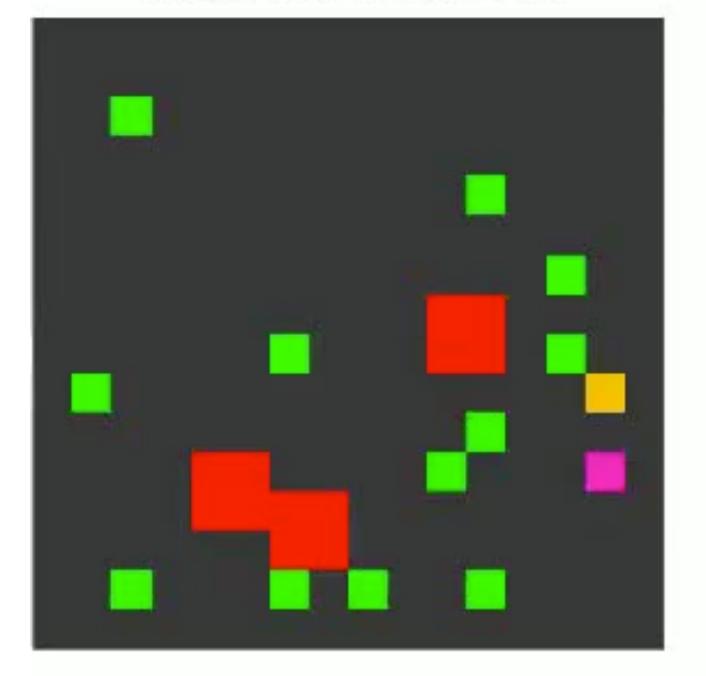


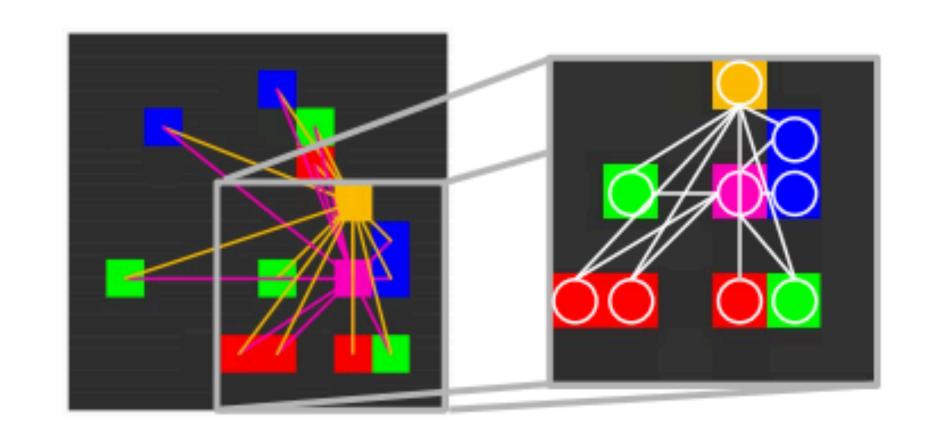


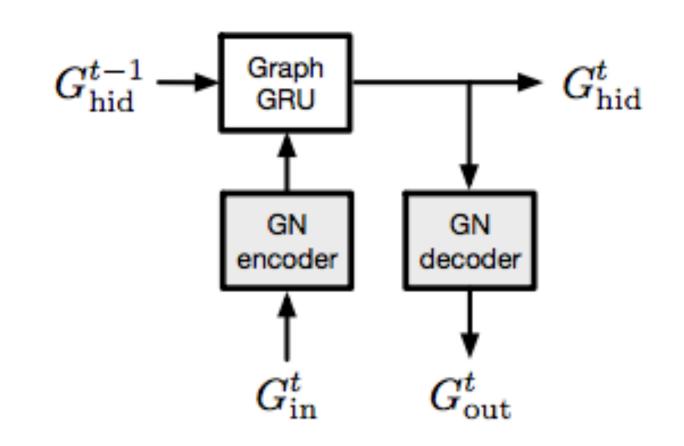
Relational forward models for multi-agent RL

Stag hunt

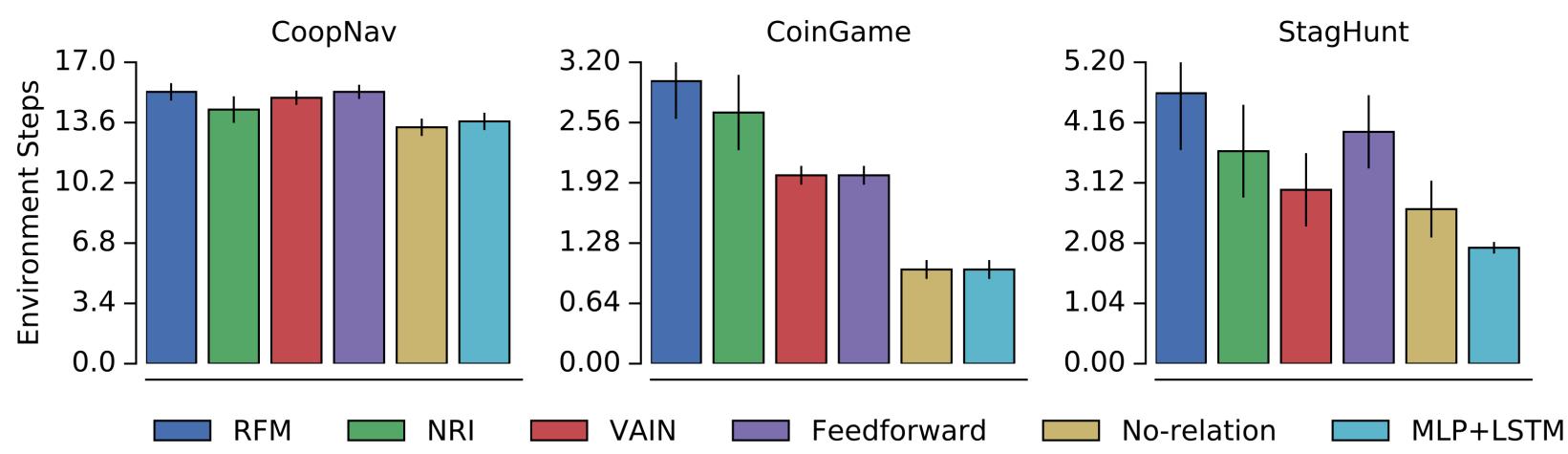
Step 0 with last actions

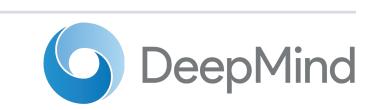




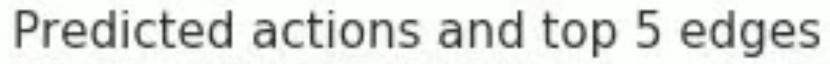


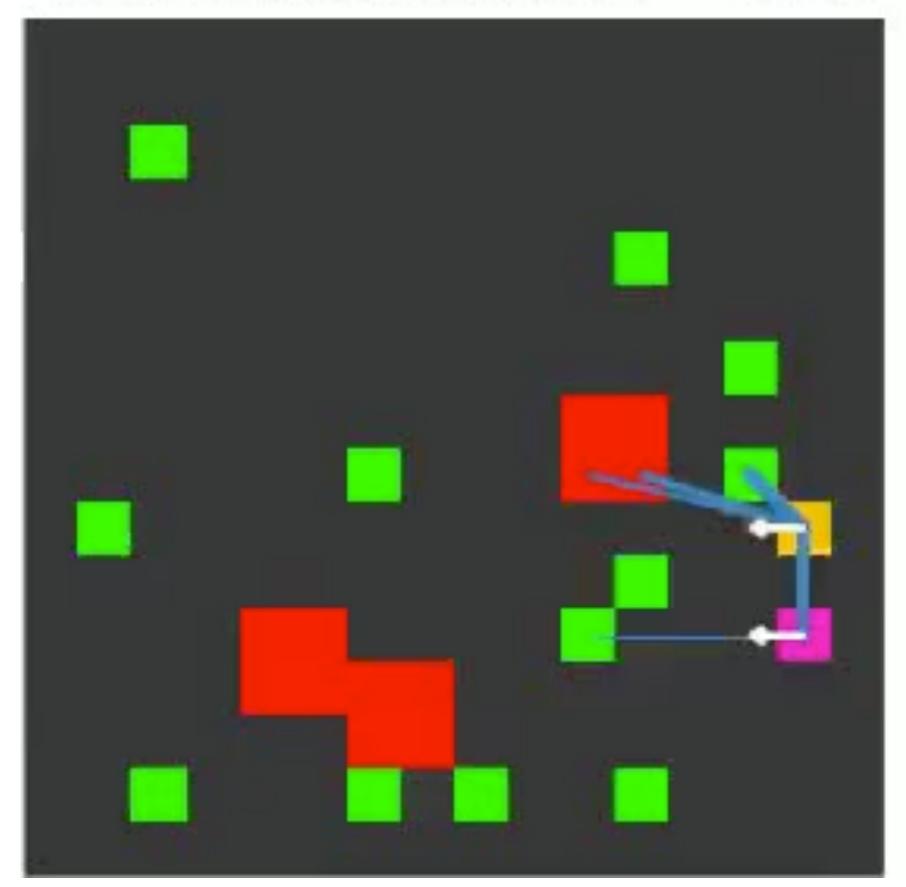
Forward prediction performance



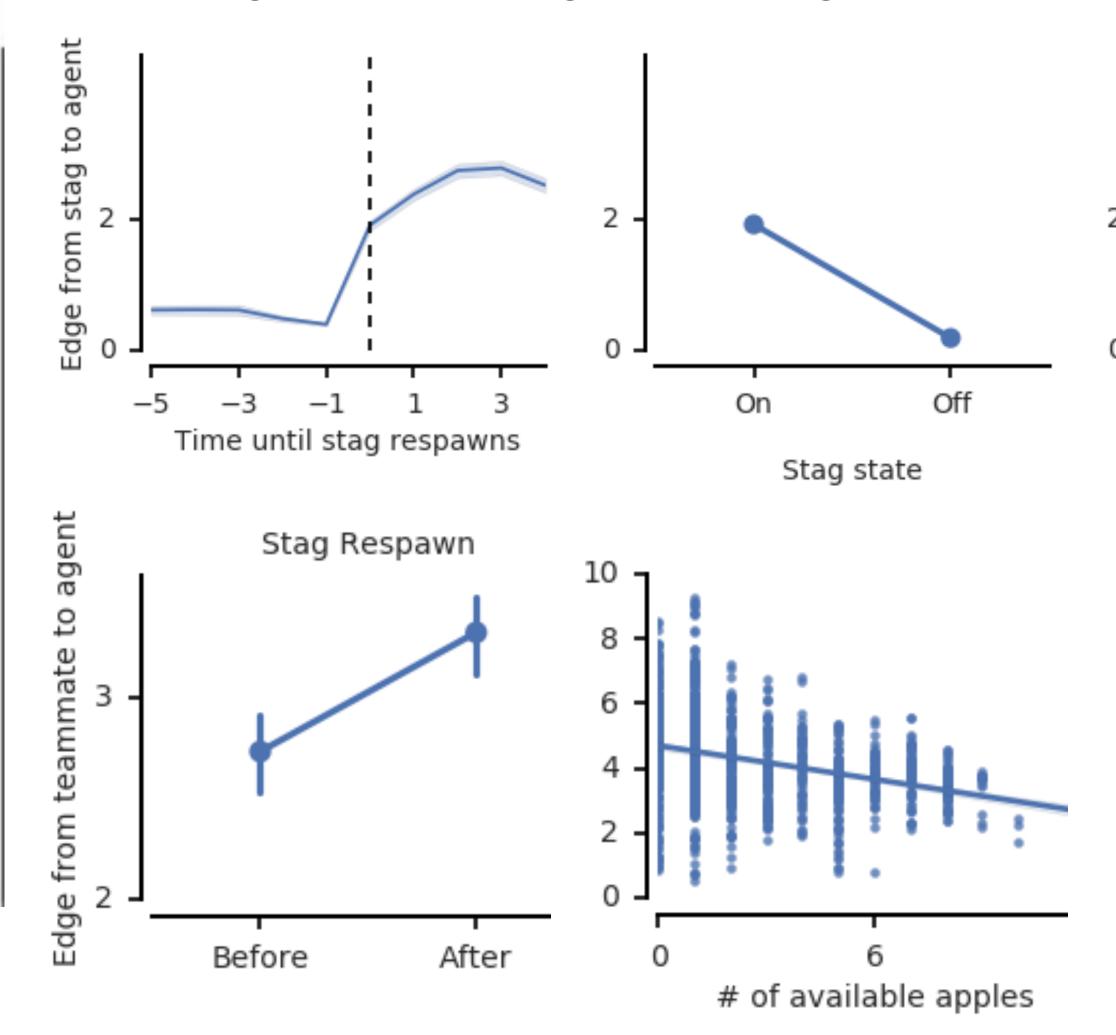


Interpretable learned representations



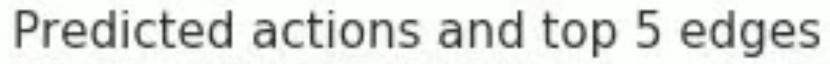


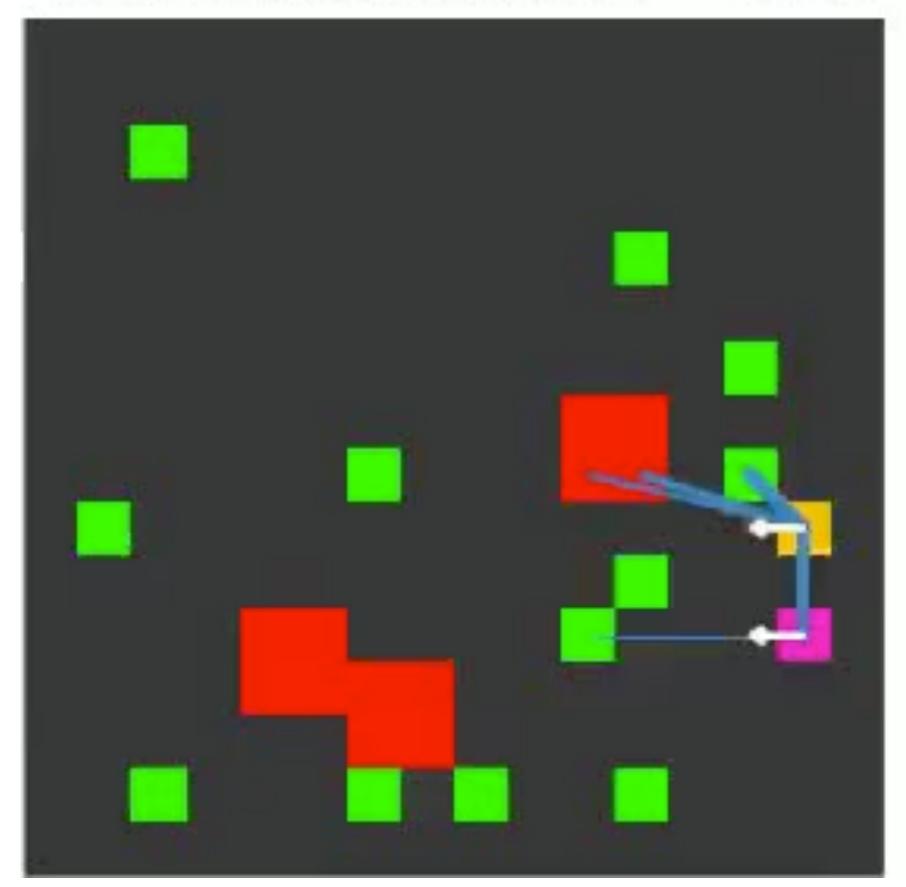
Magnitude of edge/"message" vector is meaningful



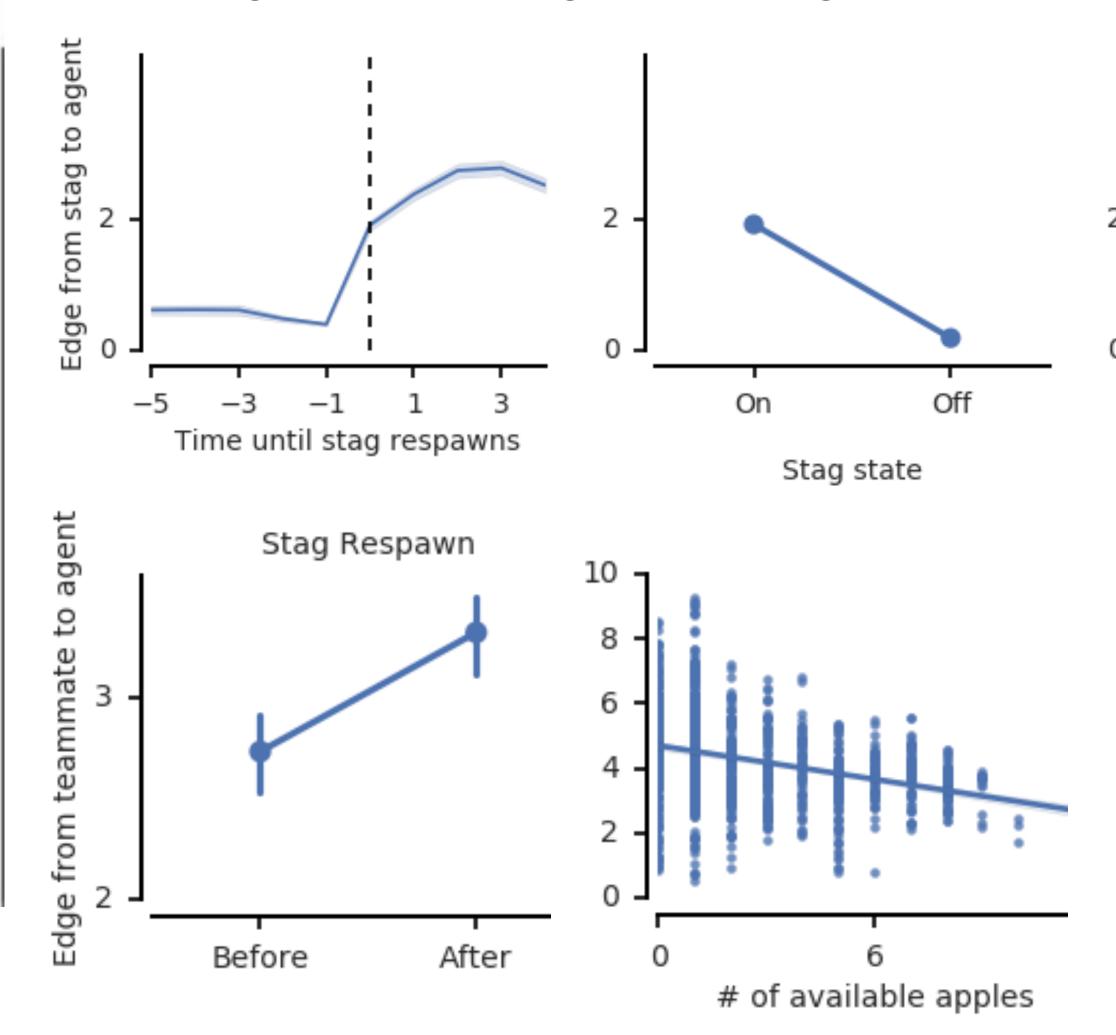
Time until stag eaten

Interpretable learned representations





Magnitude of edge/"message" vector is meaningful

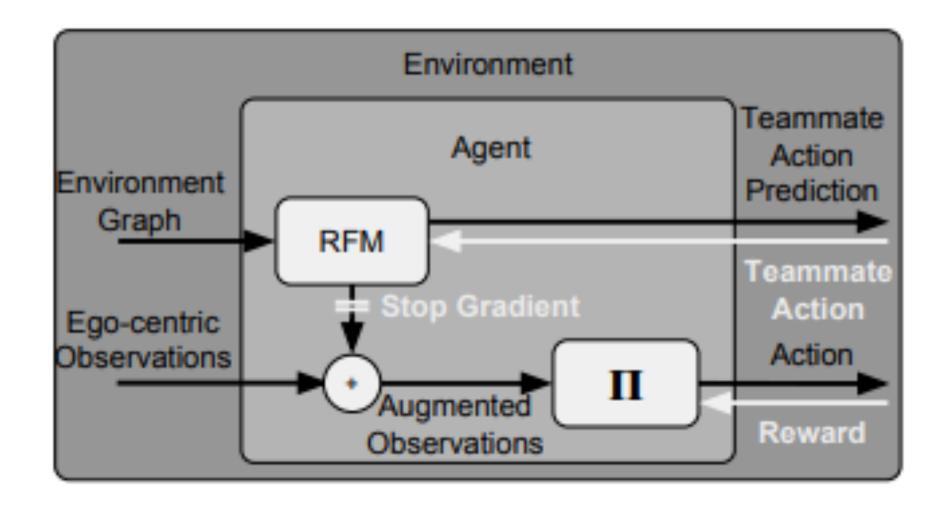


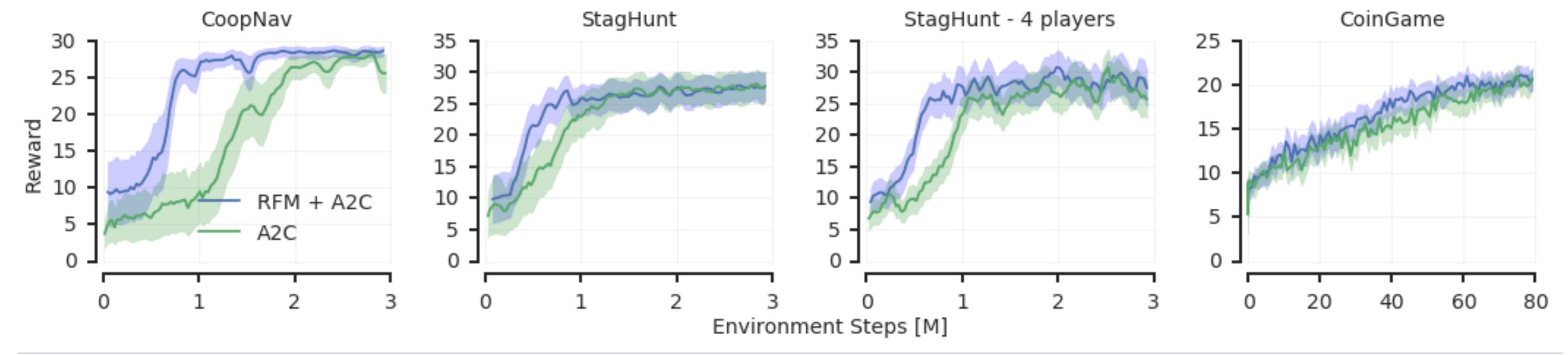
Time until stag eaten

Agents learn faster with model-augmented observations

- 1. Train a set of agents to perform each game.
- 2. Train an RFM to predict future actions.
- 3. Train a new agent, whose observations are augmented with message magnitudes (crude "theory of mind"?).

The new agent (blue curve) trains faster in all environments.





Conclusions

Human use richly structured generative knowledge

- Combinatorial generalization: "Infinite use of finite means"
- Object- and relation-centric representations
- Structured mental simulation

Conclusions

Human use richly structured generative knowledge

- Combinatorial generalization: "Infinite use of finite means"
- Object- and relation-centric representations
- Structured mental simulation

Graph Networks: strong relational inductive bias

- Naturally support combinatorial generalization via compositional sharing
- Graph-structured representations and policies
- Open-source library: github.com/deepmind/graph_nets (with demos, including physics!)

Reject false choices

- Nature **vs** Nurture
- Structure **vs** Flexibility

- Symbolic **vs** Connectionist
- Hand-engineered vs End-to-end

Reject false choices

- Nature and Nurture
- Structure and Flexibility

- Symbolic and Connectionist
- Hand-engineered and End-to-end

The "bias versus variance trade-off" is real—however the emphasis shouldn't be on "versus", but rather on "trade-off".

Reject false choices

- Nature and Nurture
- Structure and Flexibility

- Symbolic and Connectionist
- Hand-engineered and End-to-end

The "bias versus variance trade-off" is real—however the emphasis shouldn't be on "versus", but rather on "trade-off".

Biology doesn't choose between nature *versus* nurture. It uses nature and nurture *jointly*, to build wholes which are greater than the sums of their parts.

There's great promise in synthesizing new techniques by drawing on the full Al toolkit and marrying the best approaches from today with those which were essential during times when data and computation were at a premium.

Key collaborators

Jess Hamrick

Josh Tenenbaum

Chris Bates

Razvan Pascanu

Nick Watters

Daniel Zoran

Theo Weber

Andy Ballard

Nicholas Heess

Yujia Li

Oriol Vinyals

Kelsey Allen

Alvaro Sanchez

Victor Bapst

Vinicius Zambaldi

David Raposo

Adam Santoro

Mateusz Malinowski

Andrea Tacchetti

Francis Song

Key collaborators

Jess Hamrick

Josh Tenenbaum

Chris Bates

Razvan Pascanu

Nick Watters

Daniel Zoran

Theo Weber

Andy Ballard

Nicholas Heess

Yujia Li

Oriol Vinyals

Kelsey Allen

Alvaro Sanchez

Victor Bapst

Vinicius Zambaldi

David Raposo

Adam Santoro

Mateusz Malinowski

Andrea Tacchetti

Francis Song

References

Battaglia et al., 2013, PNAS Hamrick et al., 2016, Cognition Bates et al., 2015, Proc Cog Sci Battaglia et al., 2016, NeurIPS Watters et al., 2017, NeurIPS Raposo et al., 2017, ICLR workshop Santoro et al., 2017, NeurIPS Sanchez-Gonzalez et al., 2018, ICML Hamrick et al., 2017, ICLR Pascanu et al., 2017, arXiv Hamrick et al., 2018, Proc Cog Sci Zambaldi et al., 2018, arXiv/under review Tacchetti et al., 2018, arXiv/under review Battaglia et al. 2018 arXiv

