
Which resampling methods can tame ill-behaved
gradients in chaotic systems?

Paavo Parmas
OIST

Okinawa, Japan
paavo.parmas@oist.jp

Jan Peters
TU Darmstadt

Darmstadt, Germany
mail@jan-peters.net

Kenji Doya
OIST

Okinawa, Japan
doya@oist.jp

Abstract

Learning by gradient descent with derivatives backpropagated through model
predictions is an attractive concept; however, in our previous work we showed
that when the dynamics are chaotic—a property of nonlinear systems often found
in nature—then gradient estimation can become erratic turning the optimization
into a random walk. We solved the problem with a new gradient estimation
algorithm called total propagation [6], but some work leading up to the final
solution was left out of the article. Here, we provide additional illustrations, and
discuss an alternative solution of resampling the predictions at each time step from
a distribution fitted onto the particles. We show that resampling from a Gaussian
stabilizes the gradients, while resampling from a mixture of Gaussians fitted via
EM does not. Moreover, we interpolate between fully resampled particles and
the original trajectory distribution, and show a gradual transition to ill-behaved
gradients. Finally we explain undesirable properties of resampling based methods.

1 Introduction

Motivated by the desire to overcome the restrictions of the PILCO [1] algorithm, we attempted
to swap out the approximate Gaussian distributions in PILCO with Monte Carlo particle-based
predictions [6]. The key issue we encountered is depicted in Fig. 1b. In the cart-pole swing-up and
balancing task, we chose a direction in the policy parameter space, and plotted the gradient of the
objective function against the perturbation magnitude ∆θ. For some regions of the policy parameter
space, the gradient behaves well, but in other regions the gradient variance explodes by over 106

times. This problem was caused a by a chaos-like nature of the dynamics illustrated by the fractal
pattern in the long-term predictions in Fig. 1a. One method to stabilize the gradients is by resampling
the predictions at each time step from a Gaussian distribution (see Sec. 3). Our more recent work
showed that both the gradient stabilizing effect as well as an effect on smoothing out the reward
contributed to the success of Gaussian resampling [5]. A remaining question is why resampling
stabilizes the gradients, and whether resampling from multimodal distributions may also work. We
first provide additional illustrations about the problem, then explain other resampling methods.

2 A closer look at the curse of chaos

Previously, we had explained the curse of chaos in terms of the value landscape in Fig. 1a. In Fig. 2,
we show what the predicted trajectory distributions look like for ∆θ = 0 (the well-behaved case) and
∆θ = 1.5 (the chaotic case). Due to the chaotic dynamics, there is a mixing of the trajectories, and
the derivative of any individual trajectory does not provide information about the derivative of the
whole distribution. Notice that if one compares individual trajectories between the two cases, the
trajectories do not look that different, but the distributions have clearly different behavior.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

-0.15 -0.1 -0.05

3.35

3.4

3.45

28.2

28.4

28.6

28.8

Cart position

A
ng

le
 (r

ad
)

(a) ∆θ = 1.5

0.5 1 1.5
-5

0

5

10

15

20

25

30
Reparameterisation gradient
True gradient from finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(b)

0.5 1 1.5
-5

0

5

10

15

20

25

30

True gradient from finite differences
Total propagation gradient

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(c)

Figure 1

5 10 15 20 25 30
0

1

2

3

4

5

6

Pe
nd

ul
um

 a
ng

le
 (r

ad
)

Time step

(a) ∆θ = 0

5 10 15 20 25 30
0

1

2

3

4

5

6
Pe

nd
ul

um
 a

ng
le

 (r
ad

)

Time step

(b) ∆θ = 1.5

5 10 15 20 25 30
-15

-10

-5

0

5

10

15

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

Time step

(c) ∆θ = 0

5 10 15 20 25 30
-15

-10

-5

0

5

10

15

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

Time step

(d) ∆θ = 1.5

Figure 2: Bifurcations and a chaos-like mixing of trajectories leads to poor gradients computed using
backpropagation at ∆θ = 1.5 in Fig. 1b.

3 Resampling from a unimodal Gaussian

Originally, McHutchon [3] had unsuccessfully attempted particle-based methods in PILCO, and
suggested trying to replicate PILCO’s Gaussian moment-matching effect by fitting a Gaussian on the
particles and resampling to enforce unimodal trajectories. This was later tested in a Deep PILCO
article [2], which found that resampling indeed improved the learning performance. We found that
rather than the unimodality a more important effect of resampling is that the gradients are stabilized
(compare Fig. 1b to Fig. 3a). This effect is most likely due to an averaging out of the value landscapes,
i.e. it would smooth out the high-frequency components in Fig. 1a.

This method works by fitting a Gaussian on the particles at each time step, i.e. µ̂ =
∑P
i=1 xi/P

and Σ̂ =
∑P
i=1(xi − µ̂)(xi − µ̂)T /(P − 1). The particles are resampled from the fitted distribution

zi ∼ µ̂+ Lεi | εi ∼ N (0, I), where L is the Cholesky factor of Σ̂. See [4] for how to compute dL
dΣ̂

.

In this work we further considered a method to smoothly interpolate between fully resampling, and
keeping the particles on their original trajectory. The method works by sampling from the fitted
Gaussian, but only moving the original samples a portion of the distance towards the resampled
particles, i.e. for each each particle z′i = (1− r)zi+ rxi, where r ∈ [0, 1] is a ratio. Fig. 3 shows that
the gradients gradually transition from stable to unstable when one deviates from fully resampling.

0.5 1 1.5
-5

0

5

10

15

20

25

30
Gaussian resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(a) Full resampling

0.5 1 1.5
-5

0

5

10

15

20

25

30
Ratio = 0.10, Gaussian resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(b) Ratio = 0.1

0.5 1 1.5
-5

0

5

10

15

20

25

30
Ratio = 0.80, Gaussian resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(c) Ratio = 0.8

Figure 3: The gradients gradually transition from unstable to stable when the particles are moved
closer towards being completely resampled from a Gaussian distribution.

2

0.5 1 1.5
-5

0

5

10

15

20

25

30
EM resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(a) K = 2,M = 2

0.5 1 1.5
-5

0

5

10

15

20

25

30
EM resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(b) K = 2,M = 5

0.5 1 1.5
-5

0

5

10

15

20

25

30
EM resampling gradient
Verification of gradient by finite differences

Distance in parameter space ()

G
ra

di
en

t o
f v

al
ue

(c) K = 5,M = 2

Figure 4: Increasing the # of mixture components K or EM iterations M leads to worse gradients

4 Resampling from a mixture of Gaussians via backprop through EM

Sec. 3 explained that resampling can smooth out the gradients. An interesting question is then whether
resampling not from a unimodal Gaussian, but from a mixture distribution could allow stabilizing
the gradients, while still allowing for multimodal trajectory distributions. We propose to fit mixture
distributions using the EM algorithm, then backpropagate through the algorithm to obtain the gradient.
Algorithm 1 explains the method. The results are in Fig. 4. We can see that that the gradients were
not stabilized. The result is not entirely conclusive, as the gradient behaves poorly in the full range of
∆θ, not just in the unstable region in Fig. 1b; however, the gradients become worse, as the method
deviates further from a unimodal Gaussian, and it does not appear straight-forward to achieve good
performance with a multimodal resampling method.

5 Why resampling based methods are undesirable

Even if resampling from a multimodal distribution were to work, we believe it is not ideal, because it
destroys the temporal dependence in the particles, which is undesirable for the reasons listed below.

• It is difficult to model sampling dependencies, i.e. if the uncertainty is caused by a lack
of knowledge about the dynamics model, then the sampling should be correlated, because
sampling a prediction restricts the probability space of the underlying dynamics function.

• If the controller depends on past history, e.g. a recurrent neural network, resampling makes
it more difficult to model such a dependency.

• Parallel computation becomes more difficult, as it is necessary to exchange information
between the particles to make predictions.

• The trajectory distribution is modified, and does not correspond to the true trajectory, even if
the model is perfect. This can lead to learning controllers with lower performance, or even
worse, the task may even become impossible if the approximation is too conservative.

6 Conclusions

We have provided additional evidence towards explaining that chaotic properties of physical systems
can make it difficult to optimize controllers by differentiating through the model predictions due to
an exploding gradient variance. While we focused on control tasks, it is probable that the same issues
would emerge if one tries to train a predictive model of a chaotic system, where the model includes
hidden states which are propagated forwards along a trajectory to perform inference. Blending the
trajectories by resampling from a unimodal Gaussian distribution stabilizes the gradients; however,
in the experiments which we tested, deviating from a unimodal distribution causes the issues with
gradient variance to re-emerge. While our work does not fully rule out the possibility that some
other multimodal resampling based method may work, we explained several downsides to resampling
methods, and believe that other methods, such as total propagation [6] are preferable.

3

Algorithm 1 Particle-based trajectory predictions while resampling from a mixture of Gaussians
fitted by the Expectation-Maximization Algorithm (EM)

Input: policy π with parameters θ, episode length T , initial Gaussian state distribution p(x0), cost
function c(x), learned dynamics model f̂ , number of particles P , number of mixture components
K, number of EM iterations M .
Initialize: Set initial mixture component weights equally Wk = 1/K, set initial mixture distribu-
tions to the initial distribution gk = p(x0) for each k, sample P/K initial particles separately from
each mixture component {zi,k,0}Pi=1 ∼ gk(z0).
for t = 0 to T − 1 do

1. Predict next timestep:
for each particle i do

Compute controls: ui,t = π(zi,t; θ)

Predict next state distribution: N (xi,t+1;mi,t+1,Si,t+1) = f̂(zi,t,ui,t)
Set particle weight: wi,t+1 = Wk,t . Based on which gk, zi,t was sampled from

end for
2. Compute new initialization:
for each mixture component k do

µk = 1
P/K

∑P/K
i=1 mi,k,t+1 . The k index for mt+1 means the particle zt came gk

Σk = 1
P/K−1

∑P/K
i=1 (mi,k,t+1 − µk)(mi,k,t+1 − µk)T + 1

P/K

∑P/K
i=1 Si,k,t+1

end for
3. Run EM with weighted samples to fit the Gaussian components:
{µk,Σk,Wk}Kk=1 = EM

(
M, (mt+1,St+1,wt+1), {µk,Σk,Wk}Kk=1

)
.

The update equations in EM are weighted versions of the equations in step 2. S is ignored when
computing the responsibilities for the samples, but is used when updating the covariance of the
mixture component.

4. Resample particles and compute cost:
for each mixture component k do

Sample P/K new particles: zi,k,t+1 ∼ gk(zi,k,t+1;µk,Σk)
end for
Average the cost: ct+1 = 1

P

∑P
i=1 c(zi,t+1)

end for
Gradient computation: d

dθ

(∑T
t=1 E [c(zt+1)]

)
is stochastically approximated from the particles.

Each computation can be differentiated, and the full gradient can be obtained by backpropagation.

Acknowledgments

This work was supported by OIST Graduate School funding and by JSPS KAKENHI Grant Numbers
JP16H06563 and JP16K21738.

References
[1] Deisenroth, M. P. and Rasmussen, C. E. (2011). PILCO: A model-based and data-efficient

approach to policy search. In International Conference on Machine Learning, pages 465–472.

[2] Gal, Y., McAllister, R., and Rasmussen, C. (2016). Improving PILCO with bayesian neural
network dynamics models. In Workshop on Data-efficient Machine Learning, ICML.

[3] McHutchon, A. (2014). Modelling nonlinear dynamical systems with Gaussian Processes. PhD
thesis, University of Cambridge.

[4] Murray, I. (2016). Differentiation of the Cholesky decomposition. arXiv preprint
arXiv:1602.07527.

[5] Parmas, P. (2018). Total stochastic gradient algorithms and applications in reinforcement learning.
In Advances in Neural Information Processing Systems.

[6] Parmas, P., Rasmussen, C. E., Peters, J., and Doya, K. (2018). PIPPS: Flexible model-based
policy search robust to the curse of chaos. In International Conference on Machine Learning.

4

	Introduction
	A closer look at the curse of chaos
	Resampling from a unimodal Gaussian
	Resampling from a mixture of Gaussians via backprop through EM
	Why resampling based methods are undesirable
	Conclusions

