Combining Physical Simulators and Object-Based
Networks for Prediction and Control

Anurag Ajay Nima Fazeli Maria Bauza Jiajun Wu
CSAIL, MIT MechE, MIT MechE, MIT CSAIL, MIT
Joshua B. Tenenbaum Alberto Rodriguez Leslie P. Kaelbling
CSAIL, MIT MechE, MIT CSAIL, MIT
Abstract

Simulators serve an important role in robot controller designs; however, practical
real-world control problems involve difficult to model complex contact mechanics.
Most simulators employ approximations that lead to a loss in precision. In this
abstract, we introduce a hybrid dynamics model, simulator-augmented interaction
networks (SAIN), combining a physics engine with an object-based neural net-
work for dynamics modeling. SAIN captures the frictional interaction between
objects more accurately and efficiently than either purely data-driven or analytical
approaches. We demonstrate SAIN’s capabilities on experiments in simulation and
on a real robot. The results suggest that it also leads to better performance when
used in complex control tasks with better generalization capabilities.

Introduction

Simulators are an essential tool for development of robot
systems, in particular for systems well approximated by
rigid-body dynamics. These systems benefit from rela-
tively mature, fast, and general-purpose simulators that
rely on approximate and efficient dynamics models. How-
ever, their practical application in robotics has been limited
due to discrepancies between their predictions and real-
world observations. Several recent studies [1-3]] demon-
strate that a major source of mismatches is the contact
models used in these simulators. Contact is a complex
physical interaction that is difficult to model accurately
while maintaining computational efficiency. There are two
methods of addressing the discrepancies: data-driven and
data-augmented techniques.

Recent data-driven techniques have been developed that
account for states with a varied number of objects or gen-
eralize what they learn for one object to other similar ones
[4,[5]. These methods are effective at generalizing over
objects, modeling interactions, and handling variable num-
bers of objects. However, as they are purely data-driven, in
practice they require a large number of training examples
to arrive at a good model.

In this abstract, we present our most recent contribution
simulator-augmented interaction networks (SAIN), incor-

Figure 1: Top: the robot wants to push the
second disk to a goal position by pushing
on the first disk. Bottom: three snapshots
within a successful push (target marked as
X). The robot learns to first push the first disk
to the right and then use it to push the second
disk to the target position.

porating interaction networks into a physical simulator for complex, real-world control problems.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

Physics
Engine

Physics
Engine

Physics
Engine .

() (b) (©) (d

| |
| |
! !
! !
| |
| |
| |
I Learned !
! !
| |
| |
| |
! !
| |
| |

Figure 2: Model classes: (a) physics-based analytical models; (b) data-driven models; (c) simulator-augmented
residual models; (d) recurrent simulator-augmented residual models.

Specifically, we show: i) Sample-efficient residual learning and improved prediction accuracy relative
to the physics engine; ii) Accurate predictions for the dynamics and interaction of novel arrange-
ments and numbers of objects, and iii) Utility of the learned residual model for control in highly
under-actuated planar pushing tasks.

We demonstrate SAIN’s performance on the experimental setup depicted in Fig. [T} Here, the robot’s
objective is to guide the second disk to a goal by pushing on the first. This task is challenging due to
the presence of multiple complex frictional interactions and under-actuation. We demonstrate the
step-by-step deployment of SAIN, from training in simulation to augmentation with real-world data,
and finally control.

Background

Researchers have recently looked towards data-driven techniques to complement analytical models
and/or directly learn dynamics. For example, Byravan and Fox [6] designed neural nets to predict
rigid-body motions for planar pushing. Their approach does not exploit explicit physical knowledge.
Kloss et al. [7]] used neural net predictions as input to an analytical model; the output of the analytical
model is used as the prediction. Here, the neural network learns to maximize the analytical model’s
performance. Fazeli et al. [8] also studied learning a residual model for predicting planar impacts.

The paper closest to ours is that from Ajay et al. [3], where they used the analytical model as an
approximation to the push outcomes, and learned a residual neural model that makes corrections to
its output. In contrast, our paper makes two key innovations: first, instead of using a feedforward
network to model the dynamics of a single object, we employ an object-based network to learn
residuals. Object-based networks build upon explicit object representations and learn how they
interact; this enables capturing multi-object interactions. Second, we demonstrate that such a hybrid
dynamics model can be used for control tasks both in simulation and on a real robot. Recent papers
have explored model-predictive control with deep networks [9H11]. These approaches learn an
abstract-state transition function, not an explicit model of the environment [[12]]. In contrast, we
employ an object-based physical simulator that takes raw object states (e.g., velocity, position) as
input.

Formulation

Let S be the state space and A be the action space. A dynamics model is a function f : S x A — S
that predicts the next state given the current action and state: f(s,a) ~ s/, forall s,s’ € S, a € A.
There are two general types of dynamics models: analytical (Fig.[2h) and data-driven (Fig.[2b). Our
goal is to learn a hybrid dynamics model that combines the two (Fig.[2k). Here, conditioned on the
state-action pair, the data-driven model learns the discrepancy between analytical model predictions
and real-world data (i.e. the residual). Specifically, let f, represent the hybrid dynamics model,
fp represent the physics engine, and fp represent the residual component. We have f,(s,a) =
fo(fp(s,a),s,a) =~ s'. Intuitively, the residual model refines the physics engine’s guess using the
current state and action.

For long-term prediction, let f& : S x S x A — S represent the recurrent hybrid dynamics model
(Fig.). If s is the initial state, a; the action at time ¢, 5, the prediction by the physics engine f, at
time ¢ and §; the prediction at time ¢, then

[(5eg1, 80, a8) = 3441 ~ Se1, [p(B,a8) = 5141, 50 = S0 = So. (D

For training, we collect observational data {(s;, at, st“)}tT;Ol. The recurrent formulation addresses
the issues of compounding errors over a sequence of steps and the resulting mismatch between
training and test phases from single-step predictions. To account for the possibility of multiple objects
and with different physical properties we use interaction networks [4] as the data-driven model. An
interaction network consists of 2 neural nets: fqyn and fr;. The fr network calculates pairwise forces
between objects and the fqy, network calculates the next state of an object, based on the states of
the objects it is interacting with and the nature of the interactions. We adjust the formulation of the
interaction network to account for multi-step predictions.

Let s; = {otl, 07,...,0}} be the state at time ¢, where o} is the state for object ¢ at time ¢. Similarly,
let 8; = {0},0%, .. ot } be the predlcted state at time ¢ where o} is the predlcted state for object
1 at time ¢. In our Work ot = [pt, vt, m?, r!] where p! is the pose of object ¢ at time step ¢, v} the
ve1001ty of obJect 1 at time step t, m' the mass of object i and r* the radius of object i. Similarly,
of = [pi, vf, m*, '] where p! is the predicted pose of object i at time step ¢ and ¢ the predicted
velocity of object 1 at time step ¢t. Note that we do not predict any changes to static object properties
such as mass and radius. Also, we note that while s; is a set of objects, the state of any individual
object, o, is a vector. Now, let a! be the action applied to object i at time ¢. The equations for the
interaction network are:

et_ fre](vt;pt_pt7vt_vtam7m]7T 7T])a Ut+1_vt+dt'fdyn(vt7at7m7T7et)a
J#i
~7) ~17 ~%) ~1)
Piy1 =pp+dt- 0y, Oppq = [Piprs Oppq, ' 7'

Simulator-Augmented Interaction Networks (SAIN) extends an interaction network, where f4y, and
frel now take in the prediction of a physics engine, f,,. We now learn the residual between the physics
engine and the real world. Let 5, = {6},07,...,07} be the state at time ¢ and 6! be the state for
object ¢ at time ¢ predicted by the physics engine. The equations for SAIN are

~ I . o o o S

St+1 = fp(st7 Apy Apyenny a?)v 67& = Z frel(UZ7UZ+1 - UZapz 7pg’vz - U£7m17mJ7TZaT])a

i

f)iltJrl = vilf + dt X fdyn(vzaﬁz+1 - pivaivmla Tla 6%)7 ﬁ;+1 = p; + dt X @zqtl?

511:+1 = [ﬁhla@hlamzﬂ“z]-
These equations describe a single-step prediction. For multi-step prediction, we use the same
equations by providing the true state sy at ¢ = 0 and predicted state 5; at ¢ > 0 as input.

We use a sample-based model-predictive controller with SAIN for the task. Our action space has two
free parameters: the point where the robot contacts the first disk and the direction of the push. In
our experiments, a successful execution requires searching for a trajectory of about 50 actions. Due
to the size of the search space, we use an approximate receding horizon control algorithm with our
dynamics model. The search algorithm maintains a priority queue of action sequences based on the

loss introduced below. For each expansion, let s; be the current state and §;yr(ay, ..., ar47—1) be
the predicted state after 7" steps with actions ay, ..., a;47—1. Let s, be the goal state. We choose the
control strategy a; that minimizes the the cost function ||8;17(s¢, Gy, . . ., ar47—1) — S84||2 and insert.
Results

We now test our models on a real robot. The setup used for the real experiments is based on the
system from the MIT Push dataset [13]]. The pusher is a cylinder of radius 4.8mm attached to the last
joint of a ABB IRB 120 robot. The position of the pusher is recorded using the robot kinematics. The
two disks being pushed are made of stainless steel, have radius of 52.5mm and 58mm, and weight
0.896kg and 1.1kg. During the experiments, the smallest disk is the one pushed directly by the pusher.
The position of both disks is tracked using a Vicon system of four cameras so that the disks’ positions
are highly accurate.

Results of forward simulation are shown in Table [I SAIN outperforms IN on real data. While
both models benefit from fine-tuning, SAIN achieves the best performance. This suggests residual
learning also generalizes to real data well. All models achieve a lower error on real data than in
simulation; this is because simulated data have a significant amount of noise to make the problem
more challenging. We then evaluate SAIN (both with and without fine-tuning) for control, on 25 easy
and 25 hard pushes. The results are shown in Fig.[3] As shown in the rightmost columns of Fig. [3a]
the IN sometimes pushes the object too far and gets stuck in a local minimum whereas SAIN controls
correctly.

Object 1 Object 2

Models Fine-tuning

trans (%) pos (mm) rot(deg) trans (%) pos(mm) rot (deg)
Physics N/A 0.87 3.06 0.32 1.91 6.41 0.17
IN No 0.86 2.96 0.96 1.84 5.75 0.32
SAIN (ours) No 0.69 2.38 0.43 1.06 3.52 0.18
IN Yes 0.63 2.23 0.41 0.61 2.05 0.19
SAIN (ours) Yes 0.42 1.50 0.34 0.43 1.52 0.17

Table 1: Errors on dynamics prediction in the real world. SAIN obtains the best performance in both position

and

rotation estimation. Its performance gets further improved after fine-tuning on real data.

f ¢ 28 %%

(a) Using the model trained on simulated data only

f§ £2%%%

(b) Using the model trained on both simulated and real data

Figure 3: Results on control tasks in the real world. The goal: push red disk against the blue disk so that it

reac

hes the target region (yellow). The left two columns are examples of easy pushes, while the right four show

hard pushes. Top: The model trained on simulated data only performs well for easy pushes, but sometimes
fails on harder control tasks; Bottom: The model trained on simulated and real data improves the performance,
working well for both easy and hard pushes.

References

(1]
(2]
(3]

(4]
(5]
(6]
(7]
(8]
(9]
(10]
(11]
[12]

(13]

N. Fazeli, S. Zapolsky, E. Drumwright, and A. Rodriguez, “Fundamental limitations in performance and
interpretability of common planar rigid-body contact models,” in ISRR, 2017.

M. Bauza and A. Rodriguez, “Gp-sum. gaussian processes filtering of non-gaussian beliefs,”
arXiv:1709.08120, 2017.

A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B. Tenenbaum, and A. Rodriguez, “Augmenting
physical simulators with stochastic neural networks: Case study of planar pushing and bouncing,” in /ROS,
2018.

P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu, “Interaction networks for learning
about objects, relations and physics,” in NIPS, 2016.

M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum, “A compositional object-based approach to
learning physical dynamics,” in ICLR, 2017.

A. Byravan and D. Fox, “Se3-nets: Learning rigid body motion using deep neural networks,” in Robotics
and Automation (ICRA), 2017 IEEFE International Conference on. 1EEE, 2017, pp. 173-180.

A. Kloss, S. Schaal, and J. Bohg, “Combining learned and analytical models for predicting action effects,”
arXiv preprint arXiv:1710.04102, 2017.

N. Fazeli, S. Zapolsky, E. Drumwright, and A. Rodriguez, “Learning data-efficient rigid-body contact
models: Case study of planar impact,” in CoRL, 2017, pp. 388-397.

I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep latent features for model predictive
control,” in RSS, 2015.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep g-learning with model-based acceleration,”
in ICML, 2016.

A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal planning networks,” in /ICML, 2018.
D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley, G. Dulac-Arnold, D. Reichert,
N. Rabinowitz, A. Barreto, and T. Degris, “The predictron: End-to-end learning and planning,” in ICML,
2017.

K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million ways to be pushed. a high-fidelity
experimental dataset of planar pushing,” in /ROS. 1EEE, 2016, pp. 30-37.

