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Abstract

Object-based factorizations provide a useful level of abstraction for interacting
with the world. Building explicit object representations, however, often requires
supervisory signals that are difficult to obtain in practice. We present a paradigm
for learning object-centric representations for physical scene understanding without
direct supervision of object properties. Our model, Object-Oriented Prediction
and Planning (O2P2), jointly learns a perception function to map from image
observations to object representations, a pairwise physics interaction function to
predict the time evolution of a collection of objects, and a rendering function to
map objects back to pixels. For evaluation, we consider not only the accuracy of
the physical predictions of the model, but also its utility for downstream tasks that
require an actionable representation of intuitive physics. After training our model
on an image prediction task, we can use its learned representations to build block
towers more complicated than those observed during training.

1 Introduction
Consider the castle made out of toy blocks in Figure 1a. Can you imagine how each block was
placed, one-by-one, to build this structure? Humans possess a natural physical intuition that aids
in the performance of everyday tasks. This physical intuition can be acquired, and refined, through
experience. Despite being a core focus of the earliest days of artificial intelligence and computer
vision research, a similar level of physical scene understanding remains elusive for machines.

Cognitive scientists argue that humans’ ability to interpret the physical world derives from a richly
structured apparatus. In particular, the perceptual grouping of the world into objects and their
relations constitutes core knowledge in cognition (Spelke & Kinzler, 2007). While it is appealing
to apply such an insight to contemporary machine learning methods, it is not straightforward to do
so. A fundamental challenge is the design of an interface between the raw, often high-dimensional
observation space and a structured, object-factorized representation. Existing works that have
investigated the benefit of using objects have either assumed that an interface to an idealized object
space already exists or that supervision is available to learn a mapping between raw inputs and
relevant object properties (for instance, category, position, and orientation).

In this paper, we propose Object-Oriented Prediction and Planning (O2P2), in which we train an
object representation suitable for physical interactions without supervision of object attributes. Instead
of direct supervision, we demonstrate that segments or proposal regions in video frames, without
correspondence between frames, are sufficient supervision to allow a model to reason effectively
about intuitive physics. We jointly train a perception module, an object-factorized physics engine,
and a neural renderer on a physics prediction task with pixel generation objective. We evaluate our
learned model not only on the quality of its predictions, but also on its ability to use the learned
representations for tasks that demand a sophisticated physical understanding.
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Figure 1: (a) A toy block castle. (b) Our model’s build of the observed castle, using its learned object
representations as a guide during planning.
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Figure 2: Given an observed block tower, O2P2 can use its learned object representations to guide
planning to recreate the configuration.

2 Object-Oriented Prediction and Planning (O2P2)
In this section, we describe a method for learning object-based representations suitable for planning
in physical reasoning tasks. O2P2 consists of three components, which are trained jointly:

• A perception module that maps from an image to an object encoding. The perception module is a
convolutional encoder applied to each object segment independently.

• A physics engine to predict the time evolution of a set of objects after physics simulation. We
decompose the engine into a pairwise object interaction function finteract and a single-object
transition function ftrans, both instantiated as multi-layer perceptrons. Given ot, a set of object
vectors from the perception module at time t, the physics engine outputs ot+1. For the ith object,

ot+1,i = ftrans(ot,i) +
∑
j 6=i

finteract(ot,i, ot,j) + ot,i

• A rendering engine that produces an image prediction from a variable number of objects. We first
predict a three-channel image and single-channel heatmap for each object ot,i. We then combine all
of the object images according to the weights in their heatmaps at every pixel location to produce a
single composite image.

2.1 Planning with Learned Models
To accomplish the task depicted in Figure 1, a model must output a sequence of actions to construct
an observed configuration. This setting is more challenging than simply predicting an image with
a learned renderer because there is an implicit sequential ordering to building such a tower. For
example, the bottom cubes must be placed before the topmost triangle. O2P2 was trained solely on a
pixel-prediction task, in which it was never shown such valid action orderings (or any actions at all).
However, these orderings are essentially constraints on the physical stability of intermediate towers,
and should be derivable from a model with sufficient understanding of physical interactions.

The planning routine for constructing block towers is guided solely through errors in the learned
object representation space. The procedure is as follows:

1. The perception module encodes the goal image into a set of object representations otarg
1 .

2. We sample actions of the form (shape, position, orientation, color).
3. We evaluate the samples by likewise encoding them as object vectors and comparing them to

otarg
1 . We view each action sample as an image (analogous to observing a block held in place

before dropping it) and use the perception module to produce object vectors from each sample,
opred
0 . Because the actions selected should produce a stable tower, we run all sampled object

representations through the physics engine to yield opred
1 before comparing to otarg

1 . Object
representations are compared using mean squared error (MSE).

4. Using the action sampler and evaluation metric, we select actions using the cross-entropy method
starting from a uniform distribution. At each time step, after selecting the action that minimizes
loss to one of the observed objects in the set of vectors otarg

1 , we execute that action in MuJoCo.
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Figure 3: Given an observed image I0 at t = 0, our model predicts a set of object representations
o0, simulates the objects with a learned physics engine to produce o1, and renders the resulting
predictions to get Î1, the scene’s appearance at a later time. Observations are outlined in green, other
images rendered with the ground-truth renderer are outlined in black, and images rendered with our
learned renderer are outlined in blue.

3 Related Work
Watters et al. (2017); Chang et al. (2016); van Steenkiste et al. (2018) have shown approaches to
learning object-factorized representations from data using learned physics or interaction engines.
Alternatively, other works treat physics prediction as an image-to-image translation (Lee et al., 2018)
or classification (Lerer et al., 2016) problem. In contrast to these prior methods, we consider not
only the accuracy of the predictions of our model, but also its utility for downstream tasks that are
intentionally constructed to evaluate its ability to acquire an actionable representation of physics.

4 Experimental Evaluation
In our experimental evaluation, we aim to answer the following questions, (1) After training solely
on physics prediction tasks, can O2P2 reason about physical interactions in an actionable and useful
way? (2) Does the implicit object factorization imposed by O2P2’s structure provide a benefit over
an object-agnostic black-box video prediction approach? (3) Is an object factorization still useful
even without supervision for object representations?
4.1 Learning object representations
To construct a dataset for training O2P2, we simulate dropping between one and five blocks (with
randomly assigned initial position, color, and orientation) on top of a fixed platform in the MuJoCo
simulator. For each training image pair (I0, I1), we predict object representations o0 = fpercept(I0)
from the first observation, and predict the future object representations o1 = fphysics(o0) with the
learned physics engine. The rendering engine then predicts an image Ît = frender(ot) from each of
the object representations. We compare each image prediction Ît to its ground-truth counterpart using
both L2 distance and a perceptual loss in the feature space of the VGG network, LVGG (Simonyan
& Zisserman, 2014). The perception module is supervised by the reconstruction of I0, the physics
engine is supervised by the reconstruction of I1, and the rendering engine is supervised by the
reconstruction of both images. Specifically,

Lpercept(·) = L2(Î0, I0) + LVGG(Î0, I0), (1)

Lphysics(·) = L2(Î1, I1) + LVGG(Î1, I1), (2)
Lrender(·) = Lpercept(·) + Lphysics(·). (3)

Representative results on held-out random configurations are shown in Figure 3. Even when the
model’s predictions at t = 1 differ from the ground truth image (such as the bottom left example),
the physics engine produces a plausible simulation of the scene from the observation at t = 0.
4.2 Matching observed towers
After training O2P2 on the random configurations of blocks, we fix its parameters and employ the
planning procedure as described in Section 2.1 to build tower configurations observed in images.
Qualitative results are shown in Figure 2. Our method stacks 76% of configurations correctly, as
compared to 24% for a method which planned using an object-agnostic physics prediction model
(Lee et al., 2018). We evaluate tower stacking success by greedily matching the built configuration to
the ground-truth state of the target tower, and comparing the maximum object error (defined on its
position, identity, and color) to a predetermined threshold.
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Figure 4: (a) Visualization of scored locations for dropping an object at each timestep. Because O2P2
simulates physics before selecting an action, it is able to plan a sequence of stable actions. (b) The
selected block and drop position from the scored samples, outlined in white.

4.3 The Importance of Understanding Physics

Figure 4 depicts the entire planning and execution procedure for O2P2 on a pyramid of six blocks. At
each step, we visualize the process by which our model selects an action by showing a heatmap of
scores (negative MSE) for each action sample according to the sample’s (x, y) position (Figure 4a).
Although the model is never trained to produce valid action decisions, the planning procedure selects
a physically stable sequence of actions. For example, at the first timestep, the model scores three
x-locations highly, corresponding to the three blocks at the bottom of the pyramid. It correctly
determines that the height at which it releases a block at any of these locations does not particularly
matter, since the block will drop to the correct height after running the physics engine. Figure 4b
shows the selected action at each step.

5 Conclusion
We introduced a method of learning object-centric representations suitable for physical interactions.
These representations did not assume the usual supervision of object properties in the form of position,
orientation, velocity, or shape labels. Instead, we relied only on segment proposals and a factorized
structure in a learned physics engine to guide the training of such representations. We demonstrated
that this approach is appropriate for a standard physics prediction task. More importantly, we showed
that this method gives rise to object representations that can be used for difficult planning problems,
in which object configurations differ from those seen during training, without further adaptation. We
evaluated our model on a block tower matching task and found that it outperformed object-agnostic
approaches that made comparisons in pixel-space directly.
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