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Abstract

Learning from both observations and self-exploration is a key capability of intelligent
agents. It is present to various degrees in a number of animals that can combine infor-
mation distilled from observing a task being performed with further knowledge acquired
through self-exploration that contains variations over the demonstrations. We explore this
mechanism in robotic arms in the context of learning to execute multi-step manipulation
tasks. Specifically, the system accumulates geometric information on how humans typically
manipulate objects with simple geometric shapes through learning from demonstrations.
This geometric knowledge base is leveraged by a planner to find manipulation strategies
given a novel scene. In addition, the new environment presents uncertainty in the values of
the physical properties of the objects, such as their mass. We present an agent that has access
to a simulator of the environment, instantiated by a physics engine, and uses it to explore
multiple manipulation strategies and find successful sequences using Monte Carlo Tree
Search. The search runs multiple forward simulations of the novel scene by hypothesizing
plausible values for the unknown parameters of the mass of the objects. This abstract
presents a preliminary implementation and results of this system, in which a dual-arm 16-
DOF manipulator finds novel manipulation strategies by combining a geometric knowledge
base learned from demonstrations with self-exploration in hypothesized simulated worlds in
a simple task.

1 Introduction

Learning from both observations and self-exploration seems to be a key enabler of intelligent
behaviors that can be generalized to variations of the original observed task. In the context of the
manipulation of objects, it is possible to gather some information, especially of the geometric type,
by observing another person performing it. Without further communication or an extensive number
of demonstrations, it is challenging to observe all possible cases in which this task can occur, or
even all the important features that were relevant to the teacher’s execution. For example, we might
observe the dimensions of an object being moved, but not its mass. This additional information could
be relevant at the moment of performing the task as it might demand adjustments in the steps, e.g., a
heavier object might need a different grasp from the one demonstrated. Demonstrations are useful as
an initial guidance as to the steps and goals of the task, but generalizing this information to make
plans for a similar task in a different context or arrangement might require further knowledge. One
method to generate this body of knowledge is through self-exploration, in which the learning agent
can experiment with different options to find new strategies for the task. Naturally, the initial set of
demonstrations reduces the search space at both the task and motion levels.

Self-exploration is the process of generating and trying out new possible sequences of steps to perform
a manipulation task. In robotics applications, the field of reinforcement learning has pioneered self-
exploration on both real platforms and simulations [4] for the learning of manipulation tasks in the
continuous control space of torques applied to joint motors. The combination of demonstrations and
self-exploration through reinforcement learning in the continuous control setting has also been a
topic of research [11], with findings that indicate that an initial set of demonstrations can speed up
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Figure 1: A robot agent has access to
human demonstrations as well as unlim-
ited simulations of the world in which it
can act and observe the outcomes of its
actions. Simulations are run in the brain
of the robot and are spawned using a
physics engine (Bullet) with a world that
represent the current scene observed by
the real physical robot in its environment.
The mass of the objects is unknown to
the robot agent, and it uses the simula-
tor to experiment with multiple hypothe-
sized values of mass of the objects.

the policy-learning process as well as achieve results, in terms of accumulated rewards, that exceed
what either learning from demonstrations or reinforcement learning can achieve in isolation with
comparable effort.

In our work, learning through observations and self-exploration is instantiated at the level of sequences
of steps as logical reasoning and motion plans for each step as geometric reasoning. In the field of
robotics, this approach is tightly related to methods for task and motion planning (TAMP) [3], in
which sophisticated heuristics for logical and geometric reasoning are combined to solve mobile
manipulation problems.

We propose an architecture in which a robot agent combines observational learning with self-learning
through simulation, to find manipulation strategies that succeed in different scenarios that involve
different physical properties of the objects (e.g., mass). This system is illustrated in Fig. 1.

2 Observational Learning: Learning Multi-step Tasks from Few
Demonstrations

In the observational learning stage, we leverage our previous work on learning multi-step manipulation
tasks from a few human demonstrations [7]. These tasks are similar to assembly or disassembly
of parts and objects, in which typically there is one or more logical sequence of steps (e.g., grasp
object, move object, etc.), and geometric constraints are required to perform the task (e.g., move the
object, keeping it perpendicular to the floor). The goal is to learn a multi-step task as a sequence of
steps (keyframes) and a set of geometric constraints for each step. These geometric constraints are
expressed in the form of SE(3) volumes in object coordinates. This algorithm, C-LEARN, works in
two stages. First, it builds a geometric knowledge base (GKB) of how humans typically manipulate
simple geometric shapes. This is done by collecting a small number of human demonstrations,
on the order of 5 or 6. The structure of the GKB is depicted in Fig. 2a. The second stage
consist of collecting a single demonstration of a multi-step task, such as the examples in Fig. 2b.
C-LEARN combines the information in this single demonstration and in the GKB to compute a
sequence of keyframes with parameterized constraints so that when they are given to an optimization-
based motion planner, it can generate plans to execute this task in new environments where the
objects might have different positions and orientations compared to the initial demonstrations. For
a detailed explanation, we refer the reader to [7]. Additionally, video examples can be watched at
http://people.csail.mit.edu/cdarpino/CLEARN/index.html.

The next challenge is to be able to generalize further, not only to new positions and orientations
of the objects but also to different manipulation strategies. In a setting where we have available a
full model of the world, this formulation would be a task and motion planning problem. However,
additional challenges arise when we consider uncertainty in the outcome of actions when performed
in the real world. One common source of uncertainty in real manipulation tasks without a full model
of the world is the variations in physical properties of the objects that the agent does not know in
advance. The human demonstrations are in some sense incomplete, as the robot is able to observe the
geometric aspects but not the full set of features that the human took into account such as physical
properties of the objects. Without lack of generality and for the sake of simplicity of implementation,
we start by considering variations of only the mass of the objects. To learn multiple strategies that can
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(a) Geometric knowledge base (b) Example multi-step tasks

Figure 2

handle variations in the outcome of manipulation strategies due to this latent factor, we complement
the observational learning stage with a self-exploration stage, which spawns multiple simulations
with hypothesized values of the mass of objects. This stage is covered in the following section.

3 Self-learning: Finding Novel Manipulation Strategies

The self-learning stage incorporates elements from task and motion planning, optimization and
sampling-based motion planning, and Monte Carlo Tree Search (MCTS). We give the robot agent
access to create and run simulations using a physics engine. Analogous to the hypothesized existence
of an intuitive physics engine in the human brain [2] [8] and computational approaches to emulate
this physics modelling, [6] [10], we allow our virtual agent to envision multiple possible futures as it
takes actions in the world. We start by using a full physics engine based on the open source Bullet
[1].

Equipped with the geometric knowledge base from human demonstrations and the simulator, the
robot agent runs traces of simulations following MCTS. MCTS was most recently successful at the
game of Go [9], in which the outcome of simulation steps is determined according to the rules of the
game of Go, and the uncertainty comes from the plays of the opponent in the game. Analogously, in
our case the uncertainty comes from the physical outcome of an action which is not known a priori
by the robot agent but instead revealed by the simulator as the simulation unfolds.

The rollout policy of the MCTS is guided by interleaved task and motion planning. For task planning,
we use a PDDL planner [5] that, given a domain description, a problem description obtained from
the current scene of the physical robot, can produce sequences of high-level actions that accomplish
the task if all the outcomes follow the expected results. For example, in a task with a cylinder and
a box object where the goal is to move the cylinder to the left and the box to the right, the actions
of grasping, moving, and releasing these objects can be executed in a number of different ways.
PDDL planners are suited to efficiently solve this type of problem. Each of the task-level actions
has a potentially infinite number of geometric instances, but we reduce the search space by using the
information in the geometric knowledge base.

Using this procedure, a PDDL planner produces a set of plans indexed by nplan, each with a number
of actions indexed by naction. Each action can be executed with a number of geometric approaches
indexed by nmode, and each approach can be divided in an ordered sequence of motion plans indexed
by nkeyframe. Rollouts use a binary reward that reflects success or failure in accomplishing the
goal state of the task. Examples of simulation traces of the MCTS are shown in Fig. 3, together
with a description of the tree branching. Each node in the tree represents a keyframe, which is the
final state after a manipulation action has taken place (e.g., grasp object). Manipulation actions
are taken in sequence in each trace according to the rollout policy. The result of the search is a
candidate sequence of actions that tends to be successful in the Monte Carlo sense. Additionally,
we have access to a number of other possible traces that were run in the simulator. For example,
five traces are shown in Fig. 3. In World 1, the cylinder and box are moved by the left arm
with a top grasp. In World 2, the box has a higher mass than in World 1, and the same top
grasp fails because the box slips. A different rollout in World 2 finds a different sequence with
a lateral top grasp that succeeds with the heavy box. Videos of these examples are available at
http://people.csail.mit.edu/cdarpino/neurips18_learnSimPhysics/index.html
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Figure 3: Traces of the Monte Carlo tree with simulations for worlds with different values of mass
for the object cube.

Taking advantage of recent progress in the development of simulation tools, robot agents can be
used to design and experiment with learning models of the physical world by hypothesizing possible
scenarios in simulations before acting in the real world. These scenarios can consider both known and
unknown physical properties by experimenting with many feasible values of the latent parameter(s).
This framework enables the robot to computationally exercise a predictive engine of the physical
world around it that goes beyond rules explicitly encoded in a system, removing the barriers for
further generalization and adaptation to new situations beyond pre-designed sequences.
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