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1 Introduction

Experimental data often contains many uncontrolled parameters that make analysis and interpretation
difficult. Modern machine learning methods are particularly well-suited for data analysis, but, to
be effective in science, the results need to be interpretable. Using physical systems described by
partial differential equations (PDEs), we demonstrate the use of unsupervised learning techniques for
extracting interpretable physical parameters from unlabeled time-series data.

Recently, there has been significant interest in the data-driven analysis and discovery of PDEs
[1, 2, 3, 4, 5]. However, previous work on PDE discovery and parameter extraction often assume
the entire dataset is governed by the same dynamics and explicitly provide the key parameters to
be determined. In more complex scenarios, we have limited control over the systems that we are
studying and yet still want to model them and extract relevant physical features. To do this, we must
identify important model parameters that are uncontrolled and may vary in the raw data, producing
very different behaviors. Recent work on learning parametric PDEs has taken steps toward addressing
this issue [6]. We propose a model architecture (Fig. 1) based on variational autoencoders (VAEs)
[7]. While similar architectures have been proposed for physical systems such as interacting particles
[8] and moving objects [9], our model is specifically designed to study phenomena described by
PDEs, which have a continuous set of degrees of freedom. In our numerical experiments, we examine
the 2D convection–diffusion equation with a varying diffusion constant and flow velocity, the 2D
incompressible Navier–Stokes equation with a varying viscosity, the 1D nonlinear Schrödinger
equation with a varying nonlinearity coefficient, and the 1D Kuramoto–Sivashinsky equation with a
varying viscosity damping parameter.

We demonstrate that our VAE-based architecture can accurately identify the number of relevant
varying physical parameters and extract them from PDEs by constructing a flexible predictive model.
We further show that our parameter extraction method is robust to noisy data and can still be effective
for chaotic systems where accurate prediction is difficult.

2 Model Architecture

Our model (Fig. 1) has an encoder–decoder architecture based on variational autoencoders (VAEs)
[7], which allows us to extract interpretable latent parameters that parameterize the dynamics of
a system. The model requires time-series data that are grouped in pairs ({xt}, {yt}); each pair of
time-series must follow the same dynamics. For real datasets, this can be constructed by taking pairs
measurements in quick succession, splitting a long time-series into a pair of shorter time-series, or
repeating the same time-series twice to form a pair ({xt}, {xt}). We will refer to the first time-series
as the input series {xt}Tx

t=0 and the second time-series as the target series {yt}
Ty

t=0.
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Figure 1: VAE-based model architecture consisting of a dynamics encoder (DE) and a propagating
decoder (PD) with kernels given by a latent-to-kernel (L2K) network. The DE extracts latent
parameters z(i) from the input series {xt}. The L2K network then maps the z(i) to convolution
kernels, which are used by the PD to predict PDE propagation {ŷt} from an initial condition y0.

The input series is first fed into a dynamics encoder (DE) network which uses a series of convolutional
layers to extract the latent parameters z(i). During training, each z(i) is sampled using the VAE
reparameterization trick. These parameters z(i) along with an initial condition—the first state y0
in the target series—are then used by the propagating decoder (PD) network to predict the full
target series. The PD recurrently applies a series of dynamic convolutional layers [10] with kernels
parameterized by the latent parameters z(i). By providing the PD with an initial condition, we allow
the the DE to focus on encoding parameters that describe the dynamics of the data rather encoding a
particular state of the system.

The model is trained end-to-end using a mean-squared error loss between the PD predicted series {ŷt}
and the target series {yt} in addition to VAE regularization loss. By using the VAE sampling method
and regularizer, we compel the model to learn independent and interpretable latent parameters.

3 Parameter Extraction Experiments

For parameter extraction, we train a model with 3 latent parameters on each of our PDE datasets and
apply principal component analysis (PCA). We then evaluate on our test set and use linear regression
to measure the correlation of the extracted PCA components with the true parameters used to generate
each dataset. Our results show that PCA components with high explained variance ratios (EVRs)
tend to correlate well with physically interpretable parameters. We also find these correlations tend
to be linear with high R2 coefficients (often > 0.9), validating our use of linear regression. As an
example of parameter prediction from the extracted PCA components, see Fig. 2.

For the nonlinear Schrödinger dataset, the multi-parameter model correctly determines that only the
first PCA component—which is well correlated with the true nonlinearity parameter κ—is relevant
(Table 1). We obtain similar results for the Navier–Stokes and Kuramoto–Sivashinsky datasets. For
the convection—diffusion dataset, the three extracted PCA components correlate well with the three
varying parameters: the x and y velocity components and the diffusion constant (Table 2).

On all of the PDE datasets, our model consistently shows a robustness to noise. We test this by adding
Gaussian noise with standard deviation σ = 0.1 to the generated data, which have initial conditions
normalized to unit variance. Despite the roughly 10% added noise, our architecture is still able to
extract relevant physical parameters with no significant loss in accuracy. The prediction performance
of the model is also maintained, where the predicted PDE propagation corresponds to a denoised
version of the original noisy dataset example (Fig. 3).
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(a) No Noise (b) σ = 0.1 Noise

Figure 2: Predicted nonlinearity parameter κ from a linear fit of the first extracted PCA component
(Table 1) vs. true κ from the nonlinear Schrödinger dataset using the multi-parameter extraction (3
latent parameters) model. The light blue shaded region shows the 95% confidence interval of the
linear regression. Results are shown for (a) the original noiseless dataset as well as (b) with added
σ = 0.1 Gaussian noise.

(a) Dataset Example (b) Predicted Propagation

Figure 3: Prediction example using the model trained on the 1D nonlinear Schrödinger dataset with
σ = 0.1 added Gaussian noise. (a) shows the original noisy time-series from the dataset, and (b)
shows the PDE propagation predicted by the model from the initial condition at time 0.

No Noise σ = 0.1 Noise

Comp. # EVR R2 (κ) EVR R2 (κ)

1 0.999 0.995 0.987 0.993
2 0.001 0.002 0.013 0.002
3 0.000 0.000 0.000 0.001

Table 1: Explained variance ratios (EVRs) for each PCA component, and R2 correlation coefficients
for linear fits of the extracted PCA components with the true nonlinearity coefficient κ in the nonlinear
Schrödinger dataset. Bold EVRs indicate relevant PCA components, and a bold R2 value represents
the largest correlation of κ with one of the PCA components. Results are shown for the original
noiseless dataset as well as with added σ = 0.1 Gaussian noise.
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No Noise σ = 0.1 Noise

Comp. # EVR R2 (D) R2 (vx) R2 (vy) EVR R2 (D) R2 (vx) R2 (vy)

1 0.48 0.01 0.91 0.06 0.48 0.00 0.02 0.95
2 0.40 0.00 0.04 0.90 0.44 0.00 0.95 0.01
3 0.12 0.74 0.01 0.00 0.07 0.68 0.00 0.01

Table 2: Explained variance ratios (EVRs) for each PCA component, and R2 correlation coefficients
for linear fits of the extracted PCA components with the true parameters (the diffusion constant D,
and the velocity components vx, vy) in the convection–diffusion dataset. Bold EVRs indicate relevant
PCA components, and a bold R2 value represents the largest correlation of a particular true parameter
with one of the PCA components.

4 Conclusion

The numerical experiments show that our VAE-based architecture for parameter extraction from PDE
systems performs well on a variety of different 1D and 2D PDE datasets. The model can accurately
identify relevant parameters and extract them from raw and even noisy PDE data (with roughly 10%
added noise). These extracted parameters correlate well (in most cases, linearly with R2 > 0.9) with
the true parameters used to generate the datasets. Our method for discovering interpretable latent
parameters in PDE systems will allow us to better analyze and understand real-world phenomena and
datasets, which often have unknown and uncontrolled parameters that change the system dynamics
and cause varying behaviors that are difficult to disentangle. In the future, we will study alternative
geometries and boundary conditions, deal with spatial inhomogeneity and time-dependent parameters,
consider 3D systems, and work with latent variable predictive models for datasets with incomplete
information. These advances will allow us to apply our model to more complex applications.
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