
Value constrained model-free continuous control

Steven Bohez, Abbas Abdolmaleki, Michael Neunert,
Jonas Buchli, Nicolas Heess, Raia Hadsell

DeepMind
London, UK

Abstract

Applying Reinforcement Learning algorithms to continuous control problems often
results in policies which rely on high-amplitude, high-frequency control signals,
known colloquially as bang-bang control. To counteract this issue, multi-objective
optimization can be used to simultaneously optimize both the reward and some
auxiliary cost that discourages undesired control. In this paper we propose a
new constraint-based approach which defines a lower bound on the return while
minimizing one or more costs (such as control effort). We employ Lagrangian re-
laxation to learn both (a) the parameters of a control policy that satisfies the desired
constraints and (b) the Lagrangian multipliers for the optimization. Moreover, we
learn a single conditional policy that is able to dynamically change the trade-off
between return and cost.1

1 Introduction

Deep Reinforcement Learning (RL) has achieved numerous successes over the last couple of years,
enabling learning of effective policies from high-dimensional input, such as pixels, on complicated
tasks. However, compared to problems with discrete action spaces, control problems with high-
dimensional continuous state-action spaces – as often encountered in robotics – have proven much
more challenging. Beyond the issue of exploration in high-dimensional continuous action spaces,
RL algorithms rarely learn policies that produce smooth control signals when just optimizing for
task success. Instead, the control signals have a tendency to switch between extreme values at
high-frequency, a phenomenon colloquially referred to as bang-bang control. Smoothness, however,
is a desirable property in most real-world control problems. Unnecessary oscillations are not only
energy inefficient, they also exert stress on a physical system by exciting second-order dynamics and
increasing wear and tear on structural elements and actuators.

To regularize the behavior, one can add penalties to the reward function. As a result, the reward
function is composed of positive reward for achieving the goal and negative reward (penalties) for
control action discontinuities or high energy use. This effectively casts the problem into a multi-
objective optimization setting, where – depending on the ratio between the reward and the different
penalties – different behaviors may be achieved. While every ratio will have its optimal policy, finding
the ratio that results in the desired behavior, i.e. smooth control while still achieving an acceptable
task success rate, can be difficult and can require extensive hyperparameter tuning. Often, one must
find different hyperparameter settings for different reward-penalty trade-offs or tasks. The process
of finding appropriate parameter values can be tedious and cumbersome, and may prevent robust
general solutions. In this paper we rephrase the problem: instead of trying to find the right ratios
between reward and penalties, we regularize the optimization problem by adding constraints, thereby
reducing its effective dimensionality. More specifically, we propose to minimize the penalty with
respect to a lower bound on the success rate of the task.

1Videos available at https://sites.google.com/view/minitaurphys2018

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

https://sites.google.com/view/minitaurphys2018


2 Constrained optimization for control

In the classical Markov Decision Process (MDP) setting, an agent sequentially interacts with an
environment by observing the state of the environment s and taking an action according to a policy
a ∼ π (s | s). Each action causes a state transition with an associated reward defined by some
function r (s,a). The goal of the agent is to maximize the return, maxπ Es,a∼π [

∑
t r (st,at)]. In

the Constrained Markov Decision Process (CMDP) [3] setting we add cost function c (s,a). The goal
is to find a policy π(a | s) that trades-off between maximizing the (expected) reward and minimizing
the cost by imposing hard constraints to reduce dimensionality. For example, in locomotion, desired
behavior can be defined in terms of a lower bound on speed or an upper bound on an energy cost.
While a constraint can be placed on either the reward or the cost, in this work we consider a lower
bound on the total return. In practice one often optimizes the γ-discounted return in both cases.
We define the action-value function as Qr (s,a) = Es,a∼π [

∑
t γ

t · r (st,at) |s0 = s,a0 = a],
construct in a similar fashion the expected discounted cost action-value function Qc (s,a).. This
allows us to define the CMDP as follows

min
π

Es,a∼π [Qc (s,a)] , s.t. Es,a∼π [Qr (s,a)] ≥ V ∗r . (1)

Generally the constraint in Equation 1 is not satisfied at the start of learning, as the agent first needs
to learn how to solve the task. This limits the choice of methods that can be used to solve the CMDP:
Many existing methods assume that the constraint is satisfied at the start and only ensure that the
solution remains within the constraint-satisfying regime [e.g. 2]. Lagrangian relaxation is a general
method for solving general constrained optimization problems including CMDPs [3]. In this setting,
the hard constraint is relaxed into a soft constraint, where any constraint violation acts as a penalty
for the optimization. Applying Lagrangian relaxation to Equation 1 results in the unconstrained dual
problem

max
π

min
λ≥0

Es,a∼π [Qλ (s,a)] , with Qλ (s,a) = λ (Qr (s,a)− V ∗r )−Qc (s,a) , (2)

with an additional minimization objective over the Lagrangian multiplier λ. A larger λ results in a
higher penalty for violating the constraint. Hence, we can iteratively update λ by gradient descent
on Qλ (s,a) until the constraint is satisfied. Under assumptions described in Tessler et al. [6], this
approach converges to a saddle point. To perform the outer policy optimization for π any off-the-shelf
off-policy optimization algorithm can be used. In this work, we use MPO [1]. To improve the stability
of training, we also perform a change of variable λ = exp (λ′), λ′ ∈ R, and normalize Qλ (s,a) by
exp (λ′) + 1. One downside of the CMDP formulation given in Equation 1 is that the constraint is
placed on the expected value. This implies that the constraint will not necessarily be satisfied at every
single timestep, or visited state, during the episode. We can extend the single constraint introduced
previously to a set, possibly infinite, of point-wise constraints; one for each state induced by the
policy: ∀s ∼ π : Ea∼π [Qr (s,a)] ≥ V ∗r . As before, this problem can be optimized with Lagrangian
relaxation by introducing state-dependent Lagrangian multipliers:

max
π

Es∼π

[
min
λ(s)≥0

Ea∼π [Qλ (s,a)]

]
, with Qλ (s,a) = λ (s) (Qr (s,a)− V ∗r )−Qc (s,a) . (3)

Here we have made the assumption that nearby states have similar λmultipliers and we can generalize
to unseen states, analogues to value estimates. In practice, we train a single critic model that outputs
λ (s) as well as Qc (s,a) and Qr (s,a). In general a point-wise constraint with fixed lower bound
might be impossible to satisfy for some states in a given task (e.g. we cannot satisfy a reward
constraint in the swing-up phase of the simple pendulum). However, the lower bound can also be
made state-dependent and our approach will still be applicable.

Up to this point, we have made the assumption that we are only interested in a single, fixed value for
the lower bound. However, in some tasks one would want to solve Equation 3 for different lower
bounds V ∗r , i.e. minimizing cost for various success rates. For example, in a locomotion task, one
could be interested in optimizing energy for multiple different target speeds or gaits. To avoid the
need to solve a large number of optimization problems, we can condition the policy, value function
and Lagrangian multipliers on the desired target value and learn a bound-conditioned policy. Such a
conditional constraint allows a single policy to dynamically trade off cost and return.

2



0.0 0.2 0.4 0.6 0.8 1.0
Wall time [s] 1e5

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 v

e
lo

ci
ty

 [
m

/s
]

0.0 0.2 0.4 0.6 0.8 1.0
Average velocity [m/s]

102

103

104

A
v
e
ra

g
e
 p

e
n
a
lt

y
 [

W
]

0.0 0.2 0.4 0.6 0.8 1.0
Wall time [s] 1e5

8

6

4

2

0

2

4

6

8

λ
'

Single λ

State-dependent λ

Figure 1: Comparison of a single versus a state-dependent λ multiplier for models trained to achieve
a minimum velocity of 0.5m/s.

3 Experiments

We apply our approach to a realistic, energy-optimized robotic locomotion task, using the Minitaur
quadruped developed by Ghost Robotics [4]. Learning-based approaches have shown promise as
a way to devise locomotion controllers that show versatile and very dynamic behaviors [5]. We
model the Minitaur in MuJoCo [7] using model parameters obtained from data sheets as well as
system identification. The observations of the RL agent include noisy motor positions, yaw, pitch,
roll, angular velocities and accelerometer readings. The policy generates setpoints for low-level
position controller with a timestep of 10ms. As we are only considering forward locomotion, we
set the reward r (s,a) to be the forward velocity of the robot. We do however want learned gaits
to be sufficiently well-behaved. One way to achieve smooth control and locomotion is to optimize
for energy efficiency, as fast, opposing actions typically require more power. We hence set the cost
c (s,a) is set to be the total power usage of the motors. For both the policy and the critic we use a
two-layer MLP with 300 and 200 ReLU units, followed by an LSTM of 100 cells to cope with the
noisy partial observations.

Figure 1 shows a comparison between learning dynamics between a model using a single λ multiplier
and a model with a state-dependent one. Both agents try to achieve a lower bound on the value that is
equivalent to a minimum velocity of 0.5m/s. At first, both agents “focus” on satisfying the constraint,
increasing the penalty significantly in order to do so. Once the target velocity is exceeded, the agents
start to optimize the penalty, which drives them back to the imposed bound. A single multiplier that
is applied to all states leads to larger changes in behavior space, where the agent oscillates between
moving too slow at a lower penalty or too fast at a higher penalty. The agent with the state-dependent
multiplier tracks the target velocity more closely, and achieves slightly lower penalties. Looking at
the λ values over time in Figure 1, we see that they are generally lower in the latter case as well.

In Table 1, we compare the reward-penalty trade-off for settings with a fixed lower bound on
the velocity. We compare our approach to baselines where we clip the reward as r′ (st,at) =
min (r (st,at) , r

∗) and use a fixed coefficient α. As there is less incentive for the agent to increase
the reward over r∗, there is more opportunity to optimize the penalty. Results shown are the per-step
error with respect to the desired target velocity and the penalty, averaged across 4 seeds and 100
episodes each. We observe that when α is set too high, the agent is biased towards standing still.

Table 1: Results for models trained to achieve a fixed lower bound on the velocity. Reported numbers
are average per-step (velocity error [m/s], penalty [W]). We highlight the best constant α, in terms of
error, for each target bound.

Target α = 3e−3 α = 1e−3 α = 3e−4 α = 1e−4 Constraint
error penalty error penalty error penalty error penalty error penalty

0.1 -0.1, 35.74 -0.01, 104.2 0.07, 112.35 0.1, 245.49 0.01, 127.14
0.2 -0.2, 46.48 -0.01, 210.04 0.15, 207.19 0.23, 399.83 0.03, 106.88
0.3 -0.3, 50.3 0.06, 154.91 0.16, 213.1 0.24, 429.6 0.04, 89.97
0.4 -0.4, 54.05 0.06, 195.98 0.11, 306.1 0.32, 627.66 0.05, 132.97
0.5 -0.5, 60.71 0.13, 250.69 0.13, 332.53 0.26, 808.38 0.05, 142.93

3



Table 2: Results of models that are conditioned on the target velocity, evaluated for for different
values.

Target α = 3e−3 α = 1e−3 α = 3e−4 α = 1e−4 Constraint
error penalty error penalty error penalty error penalty error penalty

0.0 0.0, 53.68 0.01, 116.59 0.17, 272.45 0.37, 757.53 0.0, 84.07
0.1 -0.1, 54.49 0.0, 158.68 0.21, 324.16 0.37, 619.3 0.0, 141.86
0.2 -0.2, 53.54 0.02, 256.68 0.21, 373.13 0.36, 627.19 0.04, 174.79
0.3 -0.3, 53.6 -0.02, 314.71 0.16, 336.48 0.42, 747.24 0.02, 188.18
0.4 -0.4, 54.82 -0.07, 384.94 0.15, 467.21 0.32, 870.34 0.05, 252.54
0.5 -0.5, 52.37 -0.1, 366.48 0.01, 594.36 0.27, 1026.3 0.05, 361.16

In all other cases, the targeted speed is exceeded by some margin that increases with decreasing α.
While there is less incentive to exceed r∗, a larger margin decreases the chances of the actual speed
momentarily dropping below the target speed. Using the constraint-based approach, we generally
achieve average actual speeds closer to the target speed and at a lower average penalty.

Table 2 shows a comparison between agents are trained across varying target speeds, observed by the
agent, sampled uniformly in [0, 0.5] m/s. In this case, the same conditional policy is evaluated for
multiple target values. We make similar observations: a fixed penalty coefficient generally leads to
higher speeds then the set target, and higher penalties. Interestingly, for higher target velocities, the
actual velocity exceeds the target less, indicating that different values for α are required for different
targets. As we learn multipliers that are conditioned on the target, we can track the target more
closely, even for higher speeds, while simultaneously achieving a lower penalty.

Videos showing some of the learned behaviors, both in the fixed and conditional constraint case, can
be found at https://sites.google.com/view/minitaurphys2018.

4 Conclusion

In order to regularize behavior in continuous control RL tasks, we introduced a constraint-based
approach that is able to automatically trade off rewards and penalties. Specifically, we minimize
the penalties with respect to a point-wise lower bound on the reward value, for each state that the
learned policy encounters. The resulting constrained optimization problem is solved using Lagrangian
relaxation and learning the resulting state-dependent Lagrangian multipliers, allowing generalization
of multipliers across states. The policy and critic can furthermore generalize across lower bounds
by making the constraint value observable, resulting in a single bound-conditional RL agent that is
able to dynamically trade off reward and costs in a controllable way. In a simulated locomotion task
with the Minitaur quadruped, we are able to minimize electrical power usage with respect to a lower
bound on the forward velocity. We also learn a single, goal-conditioned policy that is able to move
efficiently across a range of target velocities.

References
[1] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and

Martin Riedmiller. Maximum a Posteriori Policy Optimisation. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=S1ANxQW0b.

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained Policy Optimization.
In Proceedings of the 34th International Conference on Machine Learning, pages 22–31, 2017.

[3] E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.
[4] G. Kenneally, A. De, and D. E. Koditschek. Design principles for a family of direct-drive legged

robots. IEEE Robotics and Automation Letters, 1(2):900–907, July 2016.
[5] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,

and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. Robotics:
Science and Systems (RSS), 2018.

[6] Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization.
CoRR, abs/1805.11074, 2018. URL https://arxiv.org/abs/1805.11074.

[7] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, Oct 2012. doi: 10.1109/IROS.2012.6386109.

4

https://sites.google.com/view/minitaurphys2018
https://openreview.net/forum?id=S1ANxQW0b
https://arxiv.org/abs/1805.11074

	Introduction
	Constrained optimization for control
	Experiments
	Conclusion

