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Abstract

Our brains are able to exploit coarse physical models of fluids to solve everyday
manipulation tasks. There has been considerable interest in developing such a
capability in robots so that they can autonomously manipulate fluids adapting to
different conditions. In this paper, we investigate the problem of adaptation to
liquids with different characteristics. We develop a simple calibration task (stirring
with a stick) that enables rapid inference of the parameters of the liquid from RBG
data. We perform the inference in the space of simulation parameters rather than on
physically accurate parameters. This facilitates prediction and optimization tasks
since the inferred parameters may be fed directly to the simulator. We demonstrate
that our “stirring” learner performs better than when the robot is calibrated with
pouring actions. We show that our method is able to infer properties of three
different liquids – water, glycerin and gel – and present experimental results by
executing stirring and pouring actions on a UR10. We believe that decoupling of the
training actions from the goal task is an important step towards simple, autonomous
learning of the behavior of different fluids in unstructured environments.

1 Introduction

Empowering robots with a capability to autonomously manipulate liquids will lead to impact across
sectors such as engineering and the service industry. Recent approaches have focused on learning
how to pour by reasoning using simulations of the liquid [12, 8] or optimization based on parametric
assumptions (parabolic trajectory) of the liquid [9]. The physical parameters of the setup play an
important role in both approaches. This includes the shapes of the pouring and receiving containers,
intrinsic and extrinsic properties of the liquid, etc. Prior works have focused on inferring specific
subsets of these parameters via sampling [12] or by feedback in closed-loop [13].

A general class of methods, popularly known as intuitive physics [2, 1, 15], argues that coarse
representations of physical processes are sufficient for many prediction tasks. Inspired by this
approach, Lopez-Guevara et al [8] used an approximate (but real-time) fluid simulator NVIDIA Flex
to represent the behavior of liquids. Although this enabled fast prediction, their inference problem
involves mapping real world observations to the parameter space of the approximate simulator via a
cumbersome calibration step involving pouring.

In this paper, we focus on the problem of inferring the behavior of different types of liquids using
simple training interactions and their observed effects. Rather than learning physical properties, we
parameterize liquids according to inputs specified to NVIDIA Flex. The learning algorithm searches
this parameter space online. For this, the robot stirs the liquid using a motion pattern and seeks
simulation parameters that match the inclination of the stick in simulation against its observed values.
Finally, we use the inferred parameters to predict the optimized pouring action for a given liquid and
verify that it reduces spillage. The high-level contributions of this paper, in the context of pouring
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Figure 1: Learning parameters of liquids θ by stirring with the motion pattern as. The discrepancy
∆θ between the real y(t) and simulated ỹ(t) time signals is obtained in real time. The efficacy of
learning is evaluated by executing one-shot pouring and measuring the percentage spillage z.

liquids, are that we: (1) decouple actions performed during training from the goal; (2) propose an
online, autonomous calibration action; (3) achieve adaptability to different liquids.

2 Related Work and Contribution

Estimation of physical properties: A few approaches focus on estimating physical parameters such
as volume [3] and viscosity [4, 11], These methods exploit special measurement equipment such as
RGBD cameras or tactile sensors for parameter estimation. In our context, knowledge of the physical
parameters would only be useful if a high-fidelity simulation is used to optimize decision-making
during manipulation of fluids. To remain practical, it is necessary to resort to approximate simulators
which typically face model mismatch since their input parameters do not coincide exactly with
physical attributes such as viscosity. Different approaches have been proposed to learn simulator
parameters from data [15, 7, 5]. Different to [15], we do not assume a Gaussian likelihood of the real
observations given the simulated ones. Rather, we learn a model of the discrepancy between real and
simulated data and use it to accelerate the search using Bayesian Optimization[5].

Robots interacting with fluids: Existing methods that can reason about fluids, use only simula-
tions [16, 6, 10] or a combination of simulation and real observations [17]. The latter categories
of approaches suffer from the problem that approximate simulations deviate over time from reality
complicating the envisioned effects of robotic manipulations [6]. An interesting solution, proposes to
use simulations in closed-loop [13], by periodically projecting the simulated particles onto the real
liquid tracked in image-space using thermal imaging. There have been a few solutions on the use of
supervised learning [10, 14] and Bayesian Optimization [8] for pouring liquids.

Summary: We are inspired to combine promising directions of recent work that use supervision [14]
for learning to pour from, say video of pouring actions. Simultaneously, we retain the benefits of
using approximate simulation [12, 8] since it allows a generalization to a variety of manipulations.
We decouple the training task from the manipulation so that it lends itself to automation and is less
messy for tasks such as pouring liquids. Finally, we perform parameter estimation in the space of
inputs of the approximate simulator rather than physical units. This enables us to use these parameters
directly for predictive tasks by supplying them to the simulator during test execution.

3 Problem Definition

Let as ∈ As denote actions performed in training(“stirring”). Let θ ∈ Θ define the parameters
controlling the behaviour of the liquid in the simulation-based model. For each action as executed by
the robot, let the observable at time t be y(t), the inclination of the stick used for stirring. When the
same action is executed by the simulator using the parameter θ, let the resulting inclination be ỹθ(t).
We define the observed discrepancy (for stirring) over the duration T of action as as
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∆θ = E

∫
T

(y(t)− ỹθ(t))2
dt


∆ z

as θ ap

Let ap ∈ Ap be a pouring action and let z denote the corresponding spillage (as a percentage of the
poured liquid) observed when ap is executed.

Here, we analyze the problem of inferring parameters θ∗ ∈ Θ of the liquid, given a space of
training (stirring) actions As that are different from the space of goal (pouring) actions Ap. We
quantify the suitability of As by measuring the percentage of liquid spilled while performing
optimized one-shot pouring using a∗p ∈ Ap obtained from θ∗,.

Assumptions: We assume that the shapes (geometry) of the containers are available, or can be
estimated using sensors. Also, we rely on the robot’s estimation of its end effector pose, to synchronise
simulation with reality.

Inference: Given a specific As, say stirring using a fixed motion pattern, the goal of the inference
step is to estimate the best θ∗ in simulation such that the discrepancy ∆θ is minimal. At each iteration
k, an action as is executed by the robot and in simulation using a hypothesized parameter θ. The
resulting discrepancy ∆k

θ , calculated using Eq. 3, together with the parameter θ are provided to a
Bayesian Optimizer that learns a regression of θ over ∆θ using a Gaussian process.

∆k(θ) ∼ GP(µk(θ), κk(θ, θ
′
))

θ∗,k = argmin
θ∈Θ

µk(θ)
L̂n(θ) ∝ Φ

(
ε− µ(θ)

σn(θ)

)

An approximation of the likelihood [5] can be computed using the cdf of the standard Normal
distribution Φ and a threshold ε as (visualized in Fig. 2-Middle):

Evaluation: We quantitatively evaluate the suitability ofAs for the problem by measuring percentage
spillage using an optimized action a∗p ∈ Ap. This is due to the lack of an existing ground truth of the
parameters in the simulator given its approximate nature. Since our contribution concerns the training
task, we use a pouring strategy exactly as proscribed by previous work [8]. They use a simulator to
identify a∗p, by defining the loss function to be the ratio of the spilled particles to the total number of
particles simulated. The jth iteration of their method therefore involves executing the simulator with
action ajp ∈ As and θ∗. The minimization results in a∗p after a finite number of iterations (15 in our
case). Finally, we execute a∗p using the robot and measure the percentage of liquid spilled.

4 Experiments and Results

Experimental setup

Stirring: For all our experiments, we used a UR10 robot equipped with a gripper holding a stick
so that it is free to pivot at the gripping point. Before stirring begins, the stick is vertical and partly
submerged in the liquid. The motion of the end effector is limited to a plane P parallel to the ground
plane. Due to this motion, and the the resistance encountered by the stick due to the liquid, at any
instant t, the stick might deviate from its vertical position to y(t). The inclination is intricately
dependant on the velocity of the end effector and the physical properties of the liquid and the stick.
y(t) is estimated using simple computer vision on the video feed from 2 webcams with image planes
orthogonal to P . The position of the end effector of the robot is queried at 30Hz and supplied to the
simulator which replicates the executed action. The inclination produced in simulation at instant t is
recorded as ỹθ(t). The space of stirring actions As is discrete and determined by the stirring pattern.
In this work we used a cyclic sequence, As = {ais}, i = 1, · · · ,m that visually follows an m−point
star with m = 9.
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Figure 2: Left: Inclination vs time for the stick position (red) and closest sim-hypothesis (green) for
one of the repetitions in water. Discrepancy is proportional to the shaded area. Middle: Contour
plots of the posterior belief on the fluid parameters after stirring water, glycerin and gel for one of
the repetitions. Right-up: Effect of two calibration methods in the deployment task measured as the
decrease of spillage with respect to the number of iterations. Right-down: Effect of the parameters
inferred after performing the stirring action 10 and 20 times on three liquids.

Pouring: We replicate the one-shot pouring solution in existing work [8]. For completeness, we
review their method here using our notation. The space of pouring actionsAp is two dimensional and
continuous. The 2D space is parameterized by a constant angular velocity and the relative distance
between source and target containers aip =

(
ωi, pi

)
. After 15 iterations of the optimizer over ap

given θ∗, the robot obtains an estimate for the optimal pouring action a∗p, which it then executes. We
measure the percentage of liquid spilled by the robot over 5 repetitions of the above experiment.

Discussion

Learning by stirring vs learning by pouring: We compared the percentage spillage z achieved by
our algorithm which learns by stirring against the method proposed in [8] which calibrates by pouring
using a training cup. Although it would seem intuitive that applying the same task to train must result
in lower spillage under test conditions, our results indicate the contrary. Fig. 2-Right-up plots z vs N ,
where N is the number of iterations of the B.O. used to estimate θ∗. Using our stirring approach, the
spillage is less than 5% even with only 10 iterations, under half the corresponding figure when the
robot was trained with pouring. At N = 20 iterations, our approach almost achieves zeros spillage
(which is lower than learning from pouring at N = 60 iterations).

Pouring other liquids: We observed a similar trend across three different liquids (Fig. 2-Right-
down): as N is increased, the spillage reduces. However, the degree of spillage is significantly higher
for more glycerin and gel. On further investigation of the video and the simulator, we realized that the
excessive spillage for glycerin is due to the unusually high adhesive effect that makes glycerin stick to
the pouring container. Unfortunately, this adhesive behaviour cannot be modelled by the simulator on
a particle-particle interaction. We conclude that the choice of the approximate simulator, combined
with potentially different behavior across training and pouring actions might be a source of error
during spillage. However, the capability to infer parameters within a limited gamut of expressibility
is still a valuable addition to the toolkits proposed by existing methods.

5 Conclusion

We have presented the first supervised learning algorithm for robotic manipulation of liquids that
decouples the training action (stirring) from the final task (pouring) while adapting to liquids with
widely different properties. Learning by stirring is preferable to learning by pouring because it is
easy to automate, it is time efficient and avoids the mess involved due to spillage. We demonstrated
that stirring leads to reduced spillage for water compared to state of the art and also presented results
for adapting the pouring to other liquids. We discussed the several design decisions involved, along
with quantitative justification and recommendations for prospective use-cases.
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