
Algorithmic Framework for Model-based Deep
Reinforcement Learning with Theoretical Guarantees

Yuping Luo ∗† Huazhe Xu∗‡ Yuanzhi Li § Yuandong Tian ¶ Trevor Darrell ‡ Tengyu Ma §

Abstract

Model-based reinforcement learning (RL) is considered to be a promising approach
to reduce the sample complexity that hinders model-free RL. However, the theoret-
ical understanding of such methods has been rather limited. This paper introduces
a novel algorithmic framework for designing and analyzing model-based RL algo-
rithms with theoretical guarantees. We design a meta-algorithm with a theoretical
guarantee of monotone improvement to a local maximum of the expected reward.
The meta-algorithm iteratively builds a lower bound of the expected reward based
on the estimated dynamical model and sample trajectories, and then maximizes the
lower bound jointly over the policy and the model. Instantiating our framework
with simplification gives a variant of model-based RL algorithms Stochastic Lower
Bounds Optimization (SLBO). Experiments demonstrate that SLBO achieves state-
of-the-art performance when only one million or fewer samples are permitted on a
range of continuous control benchmark tasks.

1 Introduction

In recent years deep reinforcement learning has achieved strong empirical success, including learning
locomotion and manipulation skills in robotics (Levine et al., 2016; Schulman et al., 2015b) . Many
of these results are achieved by model-free RL algorithms that often require a massive number of
samples. Model-based deep reinforcement learning, in contrast, exploits the information from state
observations explicitly — by planning with an estimated dynamical model — and is considered to be
a promising approach to reduce the sample complexity.

Despite promising empirical findings, many of theoretical properties of model-based deep reinforce-
ment learning are not well-understood. For example, how does the error of the estimated model affect
the estimation of the value function and the planning? Can model-based RL algorithms be guaranteed
to improve the policy monotonically and converge to a local maximum of the value function? Towards
addressing these challenges, the main contribution of this paper is to propose a novel algorithmic
framework for model-based deep RL with theoretical guarantees. Our meta-algorithm (Algorithm 1)
extends the optimism-in-face-of-uncertainty principle to non-linear dynamical models in a way that
requires no explicit uncertainty quantification of the dynamical models.

We show that the performance of the policy is guaranteed to monotonically increase, assuming the
optimization within each iteration succeeds (see Theorem 2.1.) To the best of our knowledge, this is
the first theoretical guarantee of monotone improvement for model-based deep RL.

Finally, inspired by our framework and analysis, we design a variant of model-based RL algorithms
Stochastic Lower Bounds Optimization (SLBO). Experiments demonstrate that SLBO achieves
∗equal contribution
†Princeton University, yupingl@cs.princeton.edu
‡UC Berkeley. huazhe_xu@eecs.berkeley.edu and trevor@eecs.berkeley.edu
§Stanford University. yuanzhili92@gmail.com and tengyuma@stanford.edu
¶Facebook AI Research. yuandong@fb.com

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

state-of-the-art performance when only 1M samples are permitted on a range of continuous control
benchmark tasks.

2 Algorithmic Framework

As mentioned in the introduction, towards optimizing V π,M
?

,6 our plan is to build a lower bound for
V π,M

?

of the following type and optimize it iteratively:

V π,M
?

≥ V π,M̂ −D(M̂, π) (2.1)

where D(M̂, π) ∈ R≥0 bounds from above the discrepancy between V π,M̂ and V π,M
?

. Building
such an optimizable discrepancy bound globally that holds for all M̂ and π turns out to be rather
difficult, if not impossible. Instead, we shoot for establishing such a bound over the neighborhood of
a reference policy πref.

V π,M
?

≥ V π,M̂ −Dπref,δ(M̂, π), ∀π s.t. d(π, πref) ≤ δ (R1)
Here d(·, ·) is a function that measures the closeness of two policies, which will be chosen later in
alignment with the choice of D. We will mostly omit the subscript δ in D for simplicity in the rest of
the paper. We will require our discrepancy bound to vanish when M̂ is an accurate model:

M̂ = M? =⇒ Dπref(M̂, π) = 0, ∀π, πref (R2)

The third requirement for the discrepancy bound D is that it can be estimated and optimized in the
sense that

Dπref(M̂, π) is of the form E
τ∼πref,M?

[f(M̂, π, τ)] (R3)

where f is a known differentiable function. We can estimate such discrepancy bounds for every π in
the neighborhood of πref by sampling empirical trajectories τ (1), . . . , τ (n) from executing policy πref

on the real environment M? and compute the average of f(M̂, π, τ (i))’s. We would have to insist
that the expectation cannot be over the randomness of trajectories from π on M?, because then we
would have to re-sample trajectories for every possible π encountered.

Suppose we can establish such an discrepancy bound D (and the distance function d) with properties
(R1), (R2), and (R3) then we can devise the following meta-algorithm (Algorithm 1).

Algorithm 1 Meta-Algorithm for Model-based RL
Inputs: Initial policy π0. Discrepancy bound D and distance function d that satisfy equation (R1)
and (R2).
For k = 0 to T :

πk+1,Mk+1 = argmax
π∈Π, M∈M

V π,M −Dπk,δ(M,π) (2.2)

s.t. d(π, πk) ≤ δ (2.3)

We remark that the discrepancy bound Dπk(M,π) in the objective plays the role of learning the
dynamical model by ensuring the model to fit to the sampled trajectories.

Our main theorem, proof of which can be found at Appendix B, shows formally that the policy
performance in the real environment is non-decreasing under the assumption that the real dynamics
belongs to our parameterized familyM.
Theorem 2.1. Suppose that M? ∈ M, that D and d satisfy equation (R1) and (R2), and the
optimization problem in equation (2.2) is solvable at each iteration. Then, Algorithm 1 produces a
sequence of policies π0, . . . , πT with monotonically increasing values:

V π0,M
?

≤ V π1,M
?

≤ · · · ≤ V πT ,M
?

(2.4)

Moreover, as k →∞, the value V πk,M
?

converges to some V π̄,M
?

, where π̄ is a local maximum of
V π,M

?

in domain Π.
6Note that in the introduction we used V π for simplicity, and in the rest of the paper we will make the

dependency on M? explicit. All the notations and preliminaries are presented in the appendix.

2

3 Practical Implementation and Experiments

3.1 Practical implementation

We design with simplification of our framework a variant of model-based RL algorithms, Stochastic
Lower Bound Optimization (SLBO). First, we removed the constraints (2.3). Second, we stop the
gradient w.r.t M (but not π) from the occurrence of M in V π,M in equation (2.2) (and thus our
practical implementation is not optimism-driven.)

We use a multi-step prediction loss for learning the models with `2 norm. For a state st and
action sequence at:t+h, we define the h-step prediction ŝt+h as ŝt = st, and for h ≥ 0, ŝt+h+1 =

M̂φ(ŝt+h, at+h), The H-step loss is then defined as

L(H)
φ ((st:t+h, at:t+h);φ) =

1

H

H∑
i=1

‖(ŝt+i − ŝt+i−1)− (st+i − st+i−1)‖2. (3.1)

We note that the term V πθ,sg(M̂φ) depends on both the parameter θ and the parameter φ but there
is no gradient passed through φ, whereas L(H)

φ only depends on the φ. We optimize equation (2.2)

by alternatively maximizing V πθ,sg(M̂φ) and minimizing L(H)
φ : for the former, we use TRPO with

samples from the estimated dynamical model M̂φ (by treating M̂φ as a fixed simulator), and for
the latter we use standard stochastic gradient methods. Algorithm 2 gives a pseudo-code for the
algorithm. The nmodel and npolicy iterations are used to balance the number of steps of TRPO and
Adam updates within the loop indexed by ninner.

Algorithm 2 Stochastic Lower Bound Optimization (SLBO)

1: Initialize model network parameters φ and policy network parameters θ
2: Initialize dataset D ← ∅
3: for nouter iterations do
4: D ← D ∪ { collect ncollect samples from real environment using πθ with noises }
5: for ninner iterations do . optimize (2.2) with stochastic alternating updates
6: for nmodel iterations do
7: optimize (3.1) over φ with sampled data from D by one step of Adam
8: for npolicy iterations do
9: D′ ← { collect ntrpo samples using M̂φ as dynamics }

10: optimize πθ by running TRPO on D′

Power of stochasticity and connection to standard MB RL: We identify the main advantage of
our algorithms over standard model-based RL algorithms is that we alternate the updates of the model
and the policy within an outer iteration. By contrast, most of the existing model-based RL methods
only optimize the models once (for a lot of steps) after collecting a batch of samples (see Algorithm
3 for an example). The stochasticity introduced from the alternation with stochastic samples seems to
dramatically reduce the overfitting (of the policy to the estimated dynamical model) in a way similar
to that SGD regularizes ordinary supervised training. Another way to view the algorithm is that
the model obtained from line 7 of Algorithm 2 at different inner iteration serves as an ensemble of
models. We do believe that a cleaner and easier instantiation of our framework (with optimism) exists,
and the current version, though performing very well, is not necessarily the best implementation.

3.2 Experimental Results

We evaluate our algorithm SLBO (Algorithm 2) on five continuous control tasks from rllab (Duan
et al., 2016), including Swimmer, Half Cheetah, Humanoid, Ant, Walker. All environments that we
test have a maximum horizon of 500, while environments with longer horizons are commonly harder
to train. More details can be found in Appendix C.1.

Baselines. We compare our algorithm with 3 other algorithms including: (1) Soft Actor-Critic (SAC)
(Haarnoja et al., 2018), the state-of-the-art model-free off-policy algorithm in sample efficiency;
(2) Trust-Region Policy Optimization (TRPO) (Schulman et al., 2015a), a policy-gradient based

3

algorithm; and (3) Model-Based TRPO, a standard model-based algorithm described in Algorithm 3.
Details of these algorithms can be found in Appendix C.4.

The result is shown in Figure 1. In Fig 1, our algorithm shows superior convergence rate (in number of
samples) than all the baseline algorithms while achieving better final performance with 1M samples.
Specifically, we mark model-free TRPO performance after 8 million steps by the dotted line in Fig 1
and find out that our algorithm can achieve comparable or better final performance in one million
steps. We also study the performance of SLBO and baselines with 4 million training samples in C.5.
Ablation study of multi-step model training can be found in Appendix C.5.7

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn

(a) Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(b) Half Cheetah

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

Av
er

ag
e

Re
tu

rn

(c) Ant

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(d) Walker

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

(e) Humanoid

SLBO SLBO-MSE MB-TRPO SAC MF-TRPO

Figure 1: Comparison between SLBO (ours), SLBO with squared `2 model loss (SLBO-MSE),
vanilla model-based TRPO (MB-TRPO), model-free TRPO (MF-TRPO), and Soft Actor-Critic
(SAC). We average the results over 10 different random seeds, where the solid lines indicate the mean
and shaded areas indicate one standard deviation. The dotted reference lines are the total rewards of
MF-TRPO after 8 million steps.

References
Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement

learning for continuous control. In International Conference on Machine Learning, pp. 1329–1338, 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David
Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, pp. 1928–1937, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015b.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–5033. IEEE, 2012.

7Videos demonstrations are available at https://sites.google.com/view/algombrl/home.

4

https://sites.google.com/view/algombrl/home

A Notations and Preliminaries

We denote the state space by S, the action space by A. A policy π(·|s) specifies the conditional
distribution over the action space given a state s. A dynamical model M(·|s, a) specifies the
conditional distribution of the next state given the current state s and action a. We will use M?

globally to denote the unknown true dynamical model. Our target applications are problems with the
continuous state and action space, although the results apply to discrete state or action space as well.
When the model is deterministic, M(·|s, a) is a dirac measure. In this case, we use M(s, a) to denote
the unique value of s′ and view M as a function from S ×A to S . LetM denote a (parameterized)
family of models that we are interested in, and Π denote a (parameterized) family of policies.

Unless otherwise stated, for random variable X , we will use pX to denote its density function.

Let S0 be the random variable for the initial state. Let Sπ,Mt to denote the random variable of the
states at steps t when we execute the policy π on the dynamic model M stating with S0. Note that
Sπ,M0 = S0 unless otherwise stated. We will omit the subscript when it’s clear from the context. We
use At to denote the actions at step t similarly. We often use τ to denote the random variable for the
trajectory (S0, A1, . . . , St, At, . . .). Let R(s, a) be the reward function at each step. We assume R
is known throughout the paper, although R can be also considered as part of the model if unknown.
Let γ be the discount factor.

Let V π,M be the value function on the model M and policy π defined as:

V π,M (s) = E
∀t≥0,At∼π(·|St)
St+1∼M(·|St,At)

[∞∑
t=0

γtR(St, At) | S0 = s

]
(A.1)

We define V π,M = E
[
V π,M (S0)

]
as the expected reward-to-go at Step 0 (averaged over the random

initial states). Our goal is to maximize the reward-to-go on the true dynamical model, that is, V π,M
?

,
over the policy π. For simplicity, throughout the paper, we set κ = γ(1 − γ)−1 since it occurs
frequently in our equations. Every policy π induces a distribution of states visited by policy π:

Definition A.1. For a policy π, define ρπ,M as the discounted distribution of the states visited by
π on M . Let ρπ be a shorthand for ρπ,M

?

and we omit the superscript M? throughout the paper.
Concretely,we have ρπ = (1− γ)

∑∞
t=0 γ

t · pSπt

B Main Theorem

Proof of Theorem 2.1. Since D and d satisfy equation (R1), we have that

V πk+1,M
?

≥ V πk+1,Mk+1 −Dπk(Mk+1, πk+1)

By the definition that πk+1 and Mk+1 are the optimizers of equation (2.2), we have that

V πk+1,Mk+1 −Dπk(Mk+1, πk+1) ≥ V πk,M
?

−Dπk(M?, πk) = V πk,M
?

(by equation R2)

Combing the two equations above we complete the proof of equation (2.4).

For the second part of the theorem, by compactness, we have that a subsequence of πk converges
to some π̄. By the monotonicity we have V πk,M

? ≤ V π̄,M
?

for every k ≥ 0. For the sake of
contradiction, we assume π̄ is a not a local maximum, then in the neighborhood of π̄ there exists π′

such that V π
′,M?

> V π̄,M
?

and d(π̄, π′) < δ/2. Let t be such that πt is in the δ/2-neighborhood of π̄.
Then we see that (π′,M?) is a better solution than (πt+1,Mt+1) for the optimization problem (2.2)
in iteration t because V π

′,M?

> V π̄,M
? ≥ V πt+1,M

? ≥ V πt+1,Mt+1 −Dπt(Mt+1, πt+1). (Here the
last inequality uses equation (R1) with πt as πref.) The fact (π′,M?) is a strictly better solution than
(πt+1,Mt+1) contradicts the fact that (πt+1,Mt+1) is defined to be the optimal solution of (2.2) .
Therefore π̄ is a local maximum and we complete the proof.

5

C Implementation Details

C.1 Environment Setup

We benchmark our algorithm on six tasks based on physics simulator Mujoco (Todorov et al., 2012).
We use rllab’s implementation (Duan et al., 2016) 8 to interact with Mujoco. All the environments we
use have a maximum horizon of 500 steps. We remove all contact information from observation. To
compute reward from states, we put the velocity of center of mass into the states.

C.2 Network Architecture and Model Learning

We use the same reward function as in rllab, except that all the coefficients Ccontact in front of the
contact force s are set to 0 in our case. We refer the readers to (Duan et al., 2016) Supp Material
1.2 for more details. All actions are projected to the action space by clipping. We normalize all
observations by s′ = s−µ

σ where µ, σ ∈ Rdobservation are computed from all observations we collect
from the real environment. Note that µ, σ may change as we collect new data. Our policy will always
produce an action a in [−1, 1]daction and the action a′, which is fed into the environment, is scaled
linearly by a′ = 1−a

2 amin + 1+a
2 amax, where amin, amax are the min or max values allowed at each

entry.

C.3 SLBO Details

The dynamical model is represented by a feed-forward neural network with two hidden layers, each
of which contains 500 hidden units. The activation function at each layer is ReLU. We use Adam to
optimize the loss function with learning rate 10−3 and L2 regularization 10−5. The network does
not predict the next state directly; instead, it predicts the normalized difference of st+1 − st. The
normalization scheme and statistics are the same as those of observations: We maintain µ, σ from
collected data in the real environment and may change them as we collect more, and the normalized
difference is st+1−st−σ

µ .

The policy network is a feed-forward network with two hidden layers, each of which contains 32
hidden units. The policy network uses tanh as activation function and outputs a Gaussian distribution
N (µ(s), σ2) where σ a state-independent trainable vector.

During our evaluation, we use H = 2 for multi-step model training and the batch size is given by
256
H = 128, i.e., we enforce the model to see 256 transitions at each batch.

We run our algorithm nouter = 100 iterations. We collect ntrain = 10000 steps of real samples from
the environment at the start of each iteration using current policy with Ornstein-Uhlunbeck noise
(with parameter θ = 0.15, σ = 0.3) for better exploration. At each iteration, we optimize dynamics
model and policy alternatively for ninner = 20 times. At each iteration, we optimize dynamics model
for nmodel = 100 times and optimize policy for npolicy = 40 times.

C.4 Baselines

TRPO. TRPO hyperparameters are listed at Table 1, which are the same as OpenAI Baselines’
implementation. These hyperparameters are fixed for all experiments where TRPO is used, includ-
ing ours, MB-TRPO and MF-TRPO. We do not tune these hyperparameters. We also normalize
observations as our algorithm and OpenAI Baselines do.

We use a neural network as the value function to reduce variance, which has 2 hidden layers of units
64 and uses tanh as activation functions. We use Generalized Advantage Estimator (GAE) Schulman
et al. (2015b) to estimate advantages. Both TRPO used in our algorithm and that in model-free
algorithm share the same set of hyperparameters.

SAC. For fair comparison, we do not use a large policy network (2 hidden layers, one of which has
256 hidden units) as the authors suggest, but use exactly the same policy network as ours. All other
hyperparameters are kept the same as the authors’. Note that Q network and value network have 256

8commit b3a2899 in https://github.com/rll/rllab/

6

https://github.com/rll/rllab/

Table 1: TRPO Hyperparameters.
Hyperparameters Values

batch size 4000
max KL divergence 0.01
discount γ 0.99
GAE λ 0.95
CG iterations 10
CG damping 0.1

hidden units at each hidden layers, which is more than TRPO’s. We refer the readers to Haarnoja
et al. (2018) Appendix D for more details.

MB-TRPO. Model-Based TRPO (MB-TRPO) is similar to our algorithm SLBO but does not
optimize model and policy alternatively during one iteration. We do not tune the hyperparameter
nmodel since any number beyond a certain threshold would bring similar results. For npolicy we try
{100, 200, 400, 800} on Ant and find npolicy = 200 works best. As suggested by Section C.5, we use
0.005 as the coefficient of entropy bonus for all experiments.

Algorithm 3 Model-Based Trust Region Policy Optimization (MB-TRPO)

1: initialize model network parameters φ and policy network parameters θ
2: initialize dataset D ← ∅
3: for nouter iterations do
4: D ← D ∪ { collect ncollect samples from real environment using πθ with noises }
5: for nmodel iterations do
6: optimize (3.1) over φ with sampled data from D by one step of Adam
7: for npolicy iterations do
8: D′ ← { collect ntrpo samples using M̂φ as dynamics }
9: optimize πθ by running TRPO on D′

SLBO. We tune multi-step model training parameter H ∈ {1, 2, 4, 8}, entropy regularization
coefficient λ ∈ {0, 0.001, 0.003, 0.005} and npolicy ∈ {10, 20, 40} on Ant and find H = 2, λ =
0.005, npolicy = 40 work best, then we fix them in all environments, though environment-specific
hyperparameters may work better. The other hyperparameters, including ninner, nmodel and network
architecture, are never tuned. We observe that at the first several iterations, the policy overfits to the
learnt model so a reduction of npolicy at the beginning can further speed up convergence but we omit
this for simplicity.

C.5 Ablation Study

Multi-step model training. We compare multi-step model training with single-step model training
and the results are shown on Figure 2. Note that H = 1 means we use single-step model training. We
observe that small H (e.g., 2 or 4) can be beneficial, but larger H (e.g., 8) can hurt. We hypothesize
that smaller H can help the model learn the uncertainty in the input and address the error-propagation
issue to some extent.

Entropy regularization. An additional component we apply to SLBO is the commonly-adopted
entropy regularization in policy gradient method (Mnih et al., 2016), which was found to significantly
boost the performance in our experiments (ablation study in Appendix C.5). Specifically, an additional
entropy term is added to the objective function in TRPO. We hypothesize that entropy bonus helps
exploration, diversifies the collected data, and thus prevents overfitting.

Figure 3 shows that entropy reguarization can improve both sample efficiency and final performance.
More entropy regularization leads to better sample efficiency and higher total rewards. We observe
that in the late iterations of training, entropy regularization may hurt the performance thus we stop
using entropy regularization in the second half of training.

7

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

Av
er

ag
e

Re
tu

rn

(a) Ant

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(b) Walker

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

(c) Humanoid

H = 1 H = 2 H = 4 H = 8
Figure 2: Ablation study on multi-step model training. All the experiments are average over 10
random seeds. The x-axis shows the total amount of real samples from the environment. The y-axis
shows the averaged return from execution of our learned policy. The solid line is the mean of the
total rewards from each seed. The shaded area is one-standard deviation.

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(a) Ant

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(b) Walker

= 0 = 0.001 = 0.003 = 0.005 = 0.01

Figure 3: Ablation study on entropy regularization. λ is the coefficient of entropy regularization in
the TRPO’s objective. All the experiments are averaged over 10 random seeds. The x-axis shows
the total amount of real samples from the environment. The y-axis shows the averaged return from
execution of our learned policy. The solid line is the mean of the total rewards from each seed. The
shaded area is one-standard deviation.

SLBO with 4M training steps. Figure 4 shows that SLBO is superior to SAC and MF-TRPO in
Swimmer, Half Cheetah, Walker and Humanoid when 4 million samples or fewer samples are allowed.
For Ant environment , although SLBO with less than one million samples reaches the performance
of MF-TRPO with 8 million samples, SAC’s performance surpasses SLBO after 2 million steps of
training. Since model-free TRPO almost stops improving after 8M steps and our algorithms uses
TRPO for optimizing the estimated environment, we don’t expect SLBO can significantly outperform
the reward of TRPO at 8M steps. The result shows that SLBO is also satisfactory in terms of
asymptotic convergence (compared to TRPO.) It also indicates a better planner or policy optimizer
instead of TRPO might be necessary to further improve the performance.

8

0 1 2 3 4
samples (million)

20

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn

(a) Swimmer

0 1 2 3 4
samples (million)

0

1000

2000

3000

4000

5000
Av

er
ag

e
Re

tu
rn

(b) Half Cheetah

0 1 2 3 4
samples (million)

0

500

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e

Re
tu

rn

(c) Ant

0 1 2 3 4
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(d) Walker

0 1 2 3 4
samples (million)

0

200

400

600

800

1000

1200

Av
er

ag
e

Re
tu

rn

(e) Humanoid

SLBO SLBO-MSE MB-TRPO SAC MF-TRPO

Figure 4: Comparison among SLBO (ours), SLBO with squared `2 model loss (SLBO-MSE), vanilla
model-based TRPO (MB-TRPO), model-free TRPO (MF-TRPO), and Soft Actor-Critic (SAC) with
more samples than in Figure 1. SLBO, SAC, MF-TRPO are trained with 4 million real samples. We
average the results over 10 different random seeds, where the solid lines indicate the mean and shaded
areas indicate one standard deviation. The dotted reference lines are the total rewards of MF-TRPO
after 8 million steps.

9

	Introduction
	Algorithmic Framework
	Practical Implementation and Experiments
	Practical implementation
	Experimental Results

	Notations and Preliminaries
	Main Theorem
	Implementation Details
	Environment Setup
	Network Architecture and Model Learning
	SLBO Details
	Baselines
	Ablation Study

