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Abstract

Predictive coding and its generalization to active inference offer a unified theory
of brain function. The underlying predictive processing paradigm has gained
significant attention within artificial intelligence research for its representation
learning and predictive capacity. Here, we suggest that it is possible to integrate
human and artificial generative models with an artificial neural network that predicts
sensations simultaneously with their representation in the brain. Guided by the
principles of active inference, we propose a recurrent hierarchical predictive coding
model that jointly predicts stimuli, electroencephalogram and physiological signals
under variational inference. We suggest that in a shared environment, the artificial
inference process can learn to predict and integrate the human generative model.
We evaluate the model on a publicly available dataset of subjects watching one-
minute long video excerpts and show that the model can be trained to predict
physical properties such as the amount, distance and motion of human subjects
in future frames of the videos. Our results hint at the possibility of bi-directional
active inference across human and machine.

1 Introduction

Predictive processing has been used to explain a large variety of phenomena in human cognition within
neuroscience and psychology. Prominently, the notion of predictive coding refers to the idea that
perception involves hierarchically organized generative models that aim to predict incoming sensations
by expectation error propagation [1]. The more general framework of active inference suggests that
perception and action exist in a closed loop, maintaining an agent’s internal (probabilistic) generative
model of the physical world [2]. These ideas have found traction in machine learning (ML) and a
variety of artificial predictive coding and active inference models exist [3, 4]. It has been suggested
to evaluate and enhance machine learning models by comparing internal activation with the human
brain and ML is used to classify, predict and learn shared embeddings of stimuli and brain activation
[5, 6]. Here, we propose to integrate human and artificial cognition directly, with the intention to
learn a joint predictive model of the world that augments human representations. Following ideas
from active inference, we suggest a multi-modal generative model that learns to predict future states
using predictive coding and variational inference. Deep convolutional neural networks are used to
parameterize a low-dimensional latent space for multiple time steps. Their latent representations are
modulated by previous time-steps with predictive coding.

Three core assumptions underlie the model: 1) The human brain performs hierarchical predictive
processing. 2) Information about expectations, intended actions, their outcome and (mis-)match with
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the incoming sensations is observable in neuroimaging data. 3) These observations can be integrated
into an artificial generative model and enhance its predictive capacity.

2 Hybrid variational predictive coding

Following ideas from predictive coding and active inference, we suggest a multi-modal sequential
generative model that learns to predict future states using predictive coding and variational inference.
Stimuli and EEG signal are processed independently by generating two views from a shared latent
embedding z using variational inference: p(stimulus, eeg, z) = p(z)p(stimulus|z)p(eeg|z).
For the sake of simplicity, we add any additional physiological signal as input to the EEG encoder.
This structurally follows the multi-view variational autoencoder (MVAE) described by Deep Varia-
tional Canonical Correlation Analysis (VCCA), which has been demonstrated to effectively learn
shared embeddings of multiple modalities [7]. Following the VCCA principle, the priors p(z),
p(stimulus | eeg), and p(eeg | z) are set to be Gaussian. The projections E[z | stimulus] and
E[z | eeg] of the maximum likelihood solution exist within a shared space that maximizes their
correlations. We use deep convolutional neural networks (CNNs) to parameterize the means of
pΘ(eeg | z) and pΘ(stimulus | z) and the approximate posteriors qφ(z | eeg, stimulus).
Training with this shared embedding can be done in analogy to variational autoencoders with
variational inference by sampling from qφ(z | eeg). We optimize the lower bound of the log likelihood
L(eeg, stimulus; θ, φ) with stochastic backpropagation by optimizing the sum of reconstruction
losses and the Kullback-Leibler (KL) divergence between the learned qφ(z | eeg, stimulus) and
p(z) using the reparameterization trick [8].

In order to extend the MVAE to process a total of n consecutive time-steps, we iteratively feed inputs
into the encoders and compute a total reconstruction loss. For each time-step, an arbitrary selection of
encoders can be active. Decoding from the latent space however is always executed for all modalities.

The inputs of the first step are directly used to compute the latent embedding. For time-steps 2 to
n, a hierarchy of predictive coding layers process the latent embeddings of previous time-steps and
predict the current embedding. This module extends the hierarchical convolutional predictive coding
network introduced by Lotter et al. (PredNet) to multimodal processing and variational inference [4].

Like in the original PredNet, each layer l of the predictive coding module features recurrent convolu-
tional network units Rl that are used to compute predictions Âl for each layer. These predictions
are compared with a target for the corresponding layer Al. For the lowest layer, the targets are
approximate posteriors qφ(z | eeg, stimulus). For higher layers, the targets are the error El between
Al and Âl. The recurrent representation units Rl receive information about the error El of their layer
as well as top-down feedback from the representation units in the next higher level of the network
Rl+1. The error units and the layer-wise predictions are computed with CNNs and the recurrent
representations are convolutional LSTMs. We iteratively feed the latent embeddings of time-steps 1
to 3 as inputs and use the resulting predictions Âl of the lowest predictive coding layer for variational
inference for time-steps 2 - 4. As a result, the latent embeddings for time-steps 2 - 4 are replaced
with their predicted counterparts. For accurate predictions, the model must encode the inputs into
representations that minimizes the surprise for the next steps and is informative for the predictive
coding of upcoming states. We suggest that this forces the network to learn temporal representations
of the human physiology, brain and its interaction with the environment that are congruent with the
model’s own perception.

We refer to this approach of learning a shared generative model that aims at integrating the model’s
own predictions and the human generative model by means of predictive processing with hybrid
predictive coding (HPC). We suggest that predictive coding of (neuro-)physiological signal resembles
interoceptive predictive coding, i.e. inference on internal states of the body, which seems to play a
crucial role for human cognitive capacity [9].

3 Physical presence and motion prediction with hybrid representations

We used the publicly available DEAP dataset to evaluate the model for its ability to predict future
physical states [10]. For this, EEG signal recorded of 22 subjects while watching 40 one-minute long
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Figure 1: Examples for HPC predicted segmentation masks indicating the position of human subjects
within a presented video excerpt. Each of the 11 presented independent examples corresponds to 4
sequential inference steps (from top to bottom). Masks for step 1 are reconstructed with target masks
available at the encoders, while step 2-4 are predicted using only EEG and physiological signal.

excerpts of music videos (pop songs) as well as the presented visual stimuli was used as input to
the model. EEG was recorded with a sampling rate of 512 Hz in 32 channels. Physiological signals
were recorded in 8 channels and contained electrooculography (EOG) and electromyography (EMG)
signal during stimulus presentation. The corresponding electrodes were mounted around the eyes,
mouth and the shoulder blades. More detailed information about the recording procedure can be
found in the DEAP publication. For each subject, the EEG and physiological signal was split into
segments of 1 sec duration and the first frame of each second of video was extracted. To evaluate the
model performance for predictive object recognition and tracking, we used a pre-trained version of
the VGG network to replace each video frame with a segmentation mask framing human subjects
if present [11]. This reduces the complexity of visual input, however the recorded brain signal still
refers to the complex stimuli. The data for each subject was split by video identity and divided into
subsets for training, validation and testing. The test dataset contained only previously unseen stimuli.

We iteratively fed 4 consecutive seconds of EEG and physiological data to the HPC encoders. The
preprocessed visual stimulus was only presented for the first step, i.e. steps 2-4 used only EEG and
physiological inputs. The total loss was computed as the sum of the individual MVAE reconstruction
losses, the KL divergence and the summed reconstruction loss for all latent embeddings processed
by the predictive coding module for each step. Reconstruction losses were computed as the mean
squared error (MSE) between predictions and targets. We trained for 2000 epochs using the ADAM
optimizer and evaluated performance for single subjects and across subjects by visually inspecting
the prediction quality.

The network tended to predict the existence of human subjects more frequently than annotated
using the VGG network. Interestingly, many of these predictions were wrongly annotated by the
VGG network (mostly due to bad lighting) but still correctly interpolated by the HPC network. In
longer scenes without any visible human subjects, the HPC network tended to predict many false
positives with large fluctuation between frames. If one or multiple humans were visible, the HPC
predictions tended to be more sparse compared to the VGG. Judging from visual inspection, the
HPC network seemed to improve the quality of its predictions within the 4 time-steps and often
chose to not rely on visually guided interpolation. Examples for reconstructions within a single
subject are shown in Figure 1). As there is no way for the model to infer whether a subject will move
or appear/disappear into the frame, these results indicate that the network learns to replace visual
predictions with information from the brain and body.
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In this experiment, the information used for the predictions might stem from various sources. For
example, information about the initial distance and size of an object could be inferred either from the
given video frame or from its representation in the brain. For future frames however, no visual input
is provided. This means, that any change in amount, distance or motion in the environment has to be
inferred from the physiological representation directly.

4 Conclusion

We proposed a hybrid variational recurrent predictive coding model that learns a shared generative
model that integrates artificial and human predictive processes. For this, HPC performs variational
inference on a joint latent representation of physical environment, human physiology and brain signal.
We demonstrated that the model can be used to predict the content of future frames of videos with
respect to existence, number and motion of human subjects. Future work will try to close the inference
loop with bi-directional processing, e.g. by allowing humans to have access to visualizations of the
learned hybrid generative model while the model adapts in real-time, possibly with reinforcement
learning.
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