
ChainQueen: A Real-Time Differentiable Physical
Simulator for Soft Robotics

Yuanming Hu
MIT CSAIL

Jiancheng Liu ∗
Tsinghua University, IIIS

Andrew Spielberg ∗
MIT CSAIL

Joshua B. Tenenbaum
MIT CSAIL

William T. Freeman
MIT CSAIL

Jiajun Wu
MIT CSAIL

Daniela Rus
MIT CSAIL

Wojciech Matusik
MIT CSAIL

Abstract

Physical simulators have been widely used in robot planning and control. Among
them, differentiable simulators are particularly favored, as they can be incorporated
into gradient-based optimization algorithms that are efficient in solving inverse
problems such as optimal control and motion planning. Simulating deformable
objects is, however, more challenging compared to rigid body dynamics. The un-
derlying physical laws of deformable objects are more complex, and the resulting
systems have orders of magnitude more degrees of freedom and therefore are sig-
nificantly more computationally expensive to simulate. Computing gradients with
respect to physical design or controller parameters is typically even more computa-
tionally challenging. In this paper, we propose a real-time, differentiable hybrid
Lagrangian-Eulerian physical simulator for deformable objects, ChainQueen, based
on the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM can
simulate deformable objects including contact and can be seamlessly incorporated
into inference, control and co-design tasks for soft robotics.

1 Introduction
Robot planning and control algorithms often rely on physical simulators for prediction and opti-
mization [Erez et al., 2015]. Differentiable physical simulators enable the use of gradient-based
optimization methods, significantly improving the efficiency and precision by which controllers
can be learned. Motivated by this, there has been extensive research on differentiable rigid body
simulators, using approximate [Chang et al., 2016] and exact [Degrave et al., 2016, Frigerio et al.,
2016] methods.

We introduce a real-time, differentiable physical simulator for deformable objects, building upon
the Moving Least Squares Material Point Method (MLS-MPM) [Hu et al., 2018]. We name our
simulator ChainQueen†. The Material Point Method (MPM) is a hybrid Lagrangian-Eulerian method
that uses both particles and grid nodes for simulation [Sulsky et al., 1995]. MLS-MPM accelerates
and simplifies traditional MPM using a moving least squares force discretization. In ChainQueen,
we introduce the first fully differentiable MLS-MPM simulator with respect to both state and model
parameters, with both forward simulation and back-propagation running efficiently on GPUs.

ChainQueen focuses on elastic materials for soft robotics. It is fully differentiable and 4− 9× faster
than the current state-of-the-art. Numerical and experimental validation suggest that ChainQueen
achieves high precision in both forward simulation and backward gradient computation. ChainQueen’s
differentiability allows it to support gradient-based optimization for control, design, and system

∗equally contributed. Project page: https://github.com/yuanming-hu/ChainQueen
†Or 乾坤 , literally “everything between the sky and the earth.”

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

https://github.com/yuanming-hu/ChainQueen


P2G Grid op. G2P

G2P
gradients

(backward P2G)

Grid op.
gradients

……

P2G
gradients

(backward G2P)

particle states at grid momentum grid velocity particle states at tn tn+1

Figure 1: One time step of MLS-MPM. Top arrows are for forward simulation and bottom ones are
for back propagation. A controller is embedded to generate actuation given particle configurations.

identification. By performing gradient descent on controller parameters, our simulator is capable of
solving these inverse problems on a diverse set of complex tasks, such as optimizing a 3D soft walker
controller given an objective. Similarly, gradient descent on physical design parameters, enables
inference of physical properties (e.g. mass, density and Young’s modulus) of objects.

2 Forward simulation and back-propagation

We use the moving least squares material point method (MLS-MPM) [Hu et al., 2018] to discretize
continuum mechanics, which is governed by momentum conservation

(
ρDv
Dt = ∇ · σ + ρg

)
and

mass conservation
(
Dρ
Dt + ρ∇ · v = 0

)
. We briefly cover the basics of MLS-MPM and readers are

referred to Jiang et al. [2016] and Hu et al. [2018] for a comprehensive introduction of MPM and
MLS-MPM, respectively. The material point method is a hybrid Eulerian-Lagrangian method, where
both particles and grid nodes are used. Simulation state information is transferred back-and-forth
between these two representations. The MLS-MPM simulation cycle has three steps:

1. Particle-to-grid transfer (P2G). Particles transfer massmp, momentum (mv)np , and stress-
contributed impulse to their neighbouring grid nodes, using the Affine Particle-in-Cell
method (APIC) [Jiang et al., 2015] and moving least squares force discretization [Hu et al.,
2018].

2. Grid operations. Grid momentum is normalized into grid velocity after division by grid
mass. Note that neighbouring particles interact with each other through their shared grid
nodes, and collisions are handled automatically.

3. Grid-to-particle transfer (G2P). Particles gather updated velocity vn+1
p , local velocity

field gradients Cn+1
p and position xn+1

p . The constitutive model properties are updated.

Based on the gradients we have derived analytically, we have designed a high-performance imple-
mentation.Gradients of particle states at the end of a time step with respect to states at the starting
of the time step can be computed using the chain rule. With the single-step gradients computed,
iteratively applying the chain rule one level higher allows for backward propagation yields gradients
of the final state of a full simulation with respect to its initial state. That application of the chain rule
simultaneously yields gradients with respect to the controller parameters that are used in each state.
Similar application of the chain rule yields gradients with respect to design parameters. We have
designed a simple high-level TensorFlow interface on which end-users can build their applications.

Our high-performance implementation‡ takes advantage of the computational power of modern GPUs
through CUDA. Our CUDA simulator is 4−9× faster than Flex and 132× faster than the TensorFlow
reference version. We designed five test cases to evaluate the accuracy of both forward simulation
and backward gradient evaluation. The relative error is within 3× 10−5 even for simulations with as
many as 1000 time steps.

‡Based the Taichi [Hu, 2018] open source computer graphics library.

2



Figure 2: A soft 2D walker with controller optimized using gradient descent, aiming to achieve a
maximum distance. It has four actuators (left, marked by letter ‘A’s) with each capable of stretching or
compressing in the vertical direction. We visualize the stacked trajectories throughout the optimization
process.

3 Gradient-based Policy Optimization

The most attractive feature of our simulator is the existence of quickly computable gradients, which
allows the use of efficient gradient-based optimization algorithms. In this section, we show the
effectiveness of our differentiable simulator on policy and trajectory optimization tasks.

We can optimize regression-based controller models for soft robots and efficiently discover stable
gaits. The controller takes as input the state vector z, which includes target position, the center of
mass position, and velocity of each composed soft component. In our examples, the actuation vector
a for up to 16 actuators is generated by the controller. During optimization, we perform gradient
descent on variables W and b, where a = tanh (Wz+ b) is the actuation-generating controller.

Similarly, we can optimize open-loop trajectories, useful for particularly nonlinear problems. Here,
the simulation is broken up into N time windows, and an explicit actuation vector aN is solved
for each. Consraints on starting and ending actuation, Similarly, design variables ρ, including, for
instance, the Young’s modulus of each particle can be solved for in the same optimization.

We have designed a series of experiments (Fig. 2 and Fig. 3a). Gradient-based optimizers successfully
compute desired closed loop controllers controllers within only tens or hundreds of iterations.
Similarly, open-loop controllers and designs can be solved in a few tens of major iterations of
sequential-quadratic programming algorithms, as in Fig. 3b.

Finally, we present a few simple system identification examples demonstrating the potential of our
simulator for inference tasks; see https://youtu.be/4IWD4iGIsB4 for more details.

To emphasize the merits of gradient-based approaches, we compare our control method with proximal
policy optimization (PPO) [Schulman et al., 2017], a state-of-the-art reinforcement learning algorithm.
PPO is an actor-critic method which relies on sampled gradients of a reward function in order to
optimize a policy. This sampling-based approach is model-free; it relies on gradients of the rewards
with respect to controller parameters, but not with respect to the physical model for updates. For our
comparison, we use velocity projected onto the direction toward the goal as the reward. As velocity
toward the goal increases, final distance to the goal decreases. We use a simplified single link version
(with only two adjacent actuators) runner as a benchmark. Quantitative results for the finger are
shown in Fig. 4, demonstrating that for certain soft locomotion tasks our gradient-based method can
be more efficient than model-free approaches.

References
Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional

object-based approach to learning physical dynamics. ICLR 2016, 2016. 1

Jonas Degrave, Michiel Hermans, Joni Dambre, et al. A differentiable physics engine for deep
learning in robotics. arXiv preprint arXiv:1611.01652, 2016. 1

Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based robotics: Compari-
son of bullet, havok, mujoco, ode and physx. In ICRA, pages 4397–4404. IEEE, 2015. 1

Marco Frigerio, Jonas Buchli, Darwin G. Caldwell, and Claudio Semini. RobCoGen: a code generator
for efficient kinematics and dynamics of articulated robots, based on Domain Specific Languages.
7(1):36–54, 2016. 1

3

https://youtu.be/4IWD4iGIsB4


(a) 3D robots with optimized controllers: quadruped runner, robotic finger,
and a crawler.

(b) Starting and ending pose for
a co-designed arm. Bluer regions
denote stiffer material in the solu-
tion design.

0 350
0.0

0.1
Ours
PPO

0 1500

0.01

0.03 Ours
PPO

0 3500

0.01

0.05
Ours
PPO

Figure 4: Gradient-free optimization using PPO and gradient-descent based on ChainQueen, on the
2D finger task. Thanks to the accurate gradient information, even the most vanilla optimizer can beat
state-of-the-art reinforcement learning algorithms by one order of magnitude regarding optimization
speed. (Left) single, fixed target. (Middle) random targets. (Right) random targets, larger range. The
x-axis is simulation iterations and y-axis the loss.

Yuanming Hu. Taichi: An open-source computer graphics library. arXiv preprint arXiv:1804.09293,
2018. 2

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. A
moving least squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM TOG, 37(4):150, 2018. 1, 2

C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. The affine particle-in-cell method.
ACM Trans Graph, 34(4):51:1–51:10, 2015. 2

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. The material
point method for simulating continuum materials. In ACM SIGGRAPH 2016 Courses, page 24.
ACM, 2016. 2

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017. 3

Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. Application of a particle-in-cell method to
solid mechanics. Computer physics communications, 87(1-2):236–252, 1995. 1

4


	Introduction
	Forward simulation and back-propagation
	Gradient-based Policy Optimization

