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Abstract
Deep generative models seek to recover the process with which the observed data
was generated. Successful approaches in the domain of images rely on several core
inductive biases. However, a bias to account for the compositional way in which
humans structure a visual scene in terms of objects has frequently been overlooked.
In this work we propose to structure the generator of a GAN to consider objects
and their relations explicitly, and generate images by means of composition. We
evaluate our approach on several multi-object image datasets, and find that the
generator learns to identify and disentangle information corresponding to different
objects at a representational level. A human study reveals that this leads to a better
generative model of images.

1 Introduction
Deep generative models of images rely on the expressiveness of neural networks to learn the generative
process directly from data [12, 21, 28]. Their structure is determined by the inductive bias of the
neural network, which steers it to organize its computation to allow salient features to be recovered
and ultimately captured in a representation [7, 8, 9, 21]. Recently, it has been shown that independent
factors of variation, such as pose and lighting of human faces may be recovered in this way [6, 17].

A promising but under-explored inductive bias is compositionality at the representational level
of objects, which accounts for the compositional nature of the visual world and our perception
thereof [5, 27]. It allows a generative model to describe a scene as a composition of objects (entities),
thereby disentangling visual information in the scene that can be processed largely independent of
one another. It provides a means to efficiently learn a more accurate generative model of real-world
images, and by explicitly considering objects at a representational level, it serves as an important first
step in recovering corresponding object representations.

In this work we investigate object compositionality for Generative Adversarial Networks
(GANs; [12]), and present a general mechanism that allows one to incorporate corresponding structure
in the generator. Starting from strong independence assumptions about the objects in images, we pro-
pose two extensions that provide a means to incorporate dependencies among objects and background.
Following prior work, we consider different representational slots for each object [14, 25], and a
relational mechanism that preserves this separation accordingly [32]. We improve upon related work
by modelling complex visual scenes that incorporate unstructured background as well as interactions
among objects [10, 13, 14, 25] without relying on a priori information regarding these [2, 18, 31].

Generator 0 Generator 1 Generator 2 Generator 3 Generator 4 Composed Image

Figure 1: A scene (right) is generated as a composition of objects and background.

∗Work done while an intern at Google Brain.

NIPS Workshop on Modeling the Physical World: Perception, Learning, and Control, 2018, Montréal, Canada.
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Figure 2: We propose to structure the generator of a GAN to generate images as compositions of
individual objects and background. It is trained end-to-end as in Goodfellow et al. [12].

2 Incorporating Structure

In this section we propose how to structure the generator of a GAN to achieve object compositionality.
Our approach is motivated by considering the requirements to independently vary the different visual
primitives (objects) that an image is composed of.

Multiple Components If we assume that images are composed of objects that are strictly indepen-
dent of one another then (without loss of generality) we may structure our latent variables accordingly.
For images having K objects, we consider K i.i.d. vector-valued random variables Zi that each
describe an object at a representational level. K copies of a deterministic generator G(z) transform
samples from each Zi into images, such that their superposition results in the corresponding scene:

Gmulti([z1, · · · , zK ]) =

K∑
1

G(zi) , zi ∼ P (Z) (1)

When each copy of G generates an image of a single object, the resulting generative model efficiently
describes images in P (X) in a compositional manner. Each object in (1) is described in terms of
the same features (i.e. the Zi’s are i.i.d) and the weights among the generators are shared, such that
any acquired knowledge in generating a specific object is transferred across all others. Hence, rather
than having to learn about all combinations of objects (including their individual variations) that may
appear in an image, it suffices to learn about the different variations of each individual object instead.

Relational Structure In order to model relationships between objects we introduce a relational
stage, in which the representation of an object is updated as a function of all others, before each
generator proceeds to generate its image (see Appendix B for details).

Following Zambalid et al. [32] we consider one or more “attention blocks” to compute interactions
among the object representations. At its core is Multi-Head Dot-Product Attention (MHDPA; [29])
that performs non-local computation [30] or message-passing [11] when one associates each object
representation with a node in a graph. When specific design choices are made, computation of
this kind provides an efficient means to learn about relations between objects and update their
representations accordingly [4]. A single head of an attention block updates zi in the following way:

qi,ki,vi = MLP(·)(zi) A = softmax
(QKT

√
d

)
︸ ︷︷ ︸

attention weights

V ẑi = MLP up(ai) + zi (2)

where d = dim(vi) and each MLP corresponds to a multi-layer perceptron. First, a query vector qi,
a value vector vi, and a key vector ki is computed for each zi. Next, the interaction of an object i
with all other objects (including itself) is computed as a weighted sum of their value vectors. Finally,
the resulting update vector ai is projected back to dim(zi) using MLPup before being added.
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Figure 3: Generated samples by 5-GAN rel. bg. on CIFAR10 + MM (top), and CLEVR (bottom).
Left: the output of the background generator, middle: the outputs of each object generator, right: the
composed image. Images are displayed as RGBA, with white denoting an alpha value of zero.

Incorporating Background In order to describe complex visual scenes we consider a “background”
group that captures the remaining visual content in an image. The information in this group typically
does not have a sufficiently regular visual appearance, or lacks the structure with which objects may
be easily described. Hence, we incorporate an additional generator (see Figure 2) having its own set
of weights to generate the background from a separate vector of latent variables zb ∼ P (Zb).

Alpha Compositing A remaining challenge is in combining objects with background and modelling
occlusion. An adaptation of the sum in (1) to incorporate pixel-level weights requires the background
generator to assign a weight of zero to all pixel locations where objects appear, thereby increasing the
complexity of generating the background exponentially. Instead, we require the object generators
to generate an additional alpha channel for each pixel in these cases, and use alpha compositing to
combine the outputs of the different generators and background through repeated application of:

xnew = (xiαi + xjαj(1−αi))/αnew αnew = αi +αj(1−αi) (3)

3 Experiments

Generator 0 Generator 1 Generator 2 Composed Image

Generator 0 Generator 1 Generator 2 Composed Image

Generator 0 Generator 1 Generator 2 Composed Image

Figure 4: On the right are generated sam-
ples by 3-GAN on Multi-MNIST: Inde-
pendent (top), Triplet (middle), and RGB
Occluded (bottom). The other columns
show the output of each object generator.

We evaluate the proposed structure on five multi-object
datasets. We denote k-GAN ind. to describe a genera-
tor consisting of K = k components and k-GAN rel. if
it incorporates relational structure. We append “bg.” if
the model includes a background generator. We compare
GANs that incorporate our proposed structure (k-GAN)
to a strong GAN baseline (spanning on the order of 40-
50 different configurations). Additional results, hyper-
parameters, and generated samples can be found in Ap-
pendices A, B & C respectively.

Datasets We consider three variations of Multi-MNIST
(MM), in which each image (64 × 64) consists of three
rescaled MNIST digits: in Independent MM digits are
chosen randomly, Triplet MM requires that all digits in
an image are of the same type, and RGB Occluded MM
requires that each image consist of exactly one red, green, and blue digit. Additionally we consider
CIFAR10 + MM in which the digits from RGB Occluded MM are drawn onto a randomly chosen
(resized) CIFAR10 [22] image, and a processed (128× 128) version of CLEVR [19].

Utilizing Structure In analyzing the output of each generator for k-GAN, we consistently find
that the final image is generated as a composition of images consisting of individual objects and
background (Figures 3 & 4). Hence, in the process of learning to generate images, k-GAN learns
about what are individual objects, and what is background, without relying on prior knowledge or
conditioning. By disentangling this information at the representational level, it opens the possibility
to recover corresponding object representations.
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Figure 5: Results of human evaluation a) comparing the quality of the generated images by k-GAN
(k=3,4,5) to GAN b) Properties of generated images by k-GAN (k=3,4,5) and GAN on RGB Occluded
MM. k-GAN generates better images (a) that are more faithful to the reference distribution (b).

On CLEVR, in which images may have a greater number of objects than the number of components
K that was used during training, we find that the generator continues to learn a factored solution.
Visual primitives are now made up of multiple objects as can be seen in Figure 3. Similarly, in
analyzing generated images by k-GAN ind. when k > 3 on Multi-MNIST, we find that the generator
decodes part of its latent space as “no digit” as an attempt at generating the correct number of digits.

From the generated samples in Appendix C we observe that relations among the objects are correctly
captured in most cases. In analyzing the background generator we find that it sometimes generates a
single object together with the background. It rarely generates more than one object, confirming that
although it is capable, it is indeed more efficient to generate images as compositions of objects.

Human evaluation We asked humans to compare the images generated by k-GAN rel. (k=3,4,5) to
our baseline on RGB Occluded MM, CIFAR10 + MM and CLEVR, using the configuration with a
background generator for the last two datasets. For each model we select the 10 best hyper-parameter
configurations (lowest FID [16]), from which we each generate 100 images. We asked up to three
raters for each image and report the majority vote or “Equal” if no decision can be reached.

Figure 5a reports the results when asking human raters to compare the visual quality of the generated
images by k-GAN to those by GAN. It can be seen that k-GAN compares favorably across all datasets,
and in particular on RGB Occluded MM and CIFAR10 + MM we observe large differences. We find
that k-GAN performs better even when k > 3, which can be attributed to the relational mechanism,
allowing all components to agree on the correct number of digits.

In a second study we asked humans to report about properties of the generated images in order to
asses if they are more faithful to the reference distribution. In Figure 5b it can be seen that k-GAN
more frequently generates images that have the correct number of objects, number of digits, and that
satisfy all properties simultaneously (color, digit count, shapes). The difference between the correct
number of digits and correct number of objects suggests that the generated objects are often not
recognizable as digits. This does not appear to be the case from the generated samples in Appendix C,
suggesting that the raters may not have been familiar enough with the variety of MNIST digits.

4 Conclusion
We have argued for the importance of compositionality at the representational level of objects in
GANs. On a benchmark of multi-object datasets we have shown that by incorporating (relational)
structure k-GAN learns about individual objects and background in the process of synthesizing
samples. A human study revealed that this leads to a better generative model of images. We are
hopeful that in disentangling information corresponding to different objects at a representational level
these may ultimately be recovered. Hence, we believe that this work is an important contribution
towards learning object representations of complex real-world images without any supervision.
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A Additional Experiment Results

A.1 Human Study - Properties
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(a) Properties on CIFAR10 + MM
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Figure 6: Results of human evaluation. Properties of generated images by k-GAN (k=3,4,5) and GAN
on CIFAR10 + MM (a) and CLEVR (b). Note that on CLEVR all evaluated properties are undesirable,
and thus a larger number of “False” responses is better.

On CIFAR10 + MM (Figure 6a) it appears that GAN is able to accurately generate the correct number
of objects, although the addition of background makes it difficult to provide a comparison in this case.
On the other hand if we look at the number of digits, then we find that k-GAN outperforms GAN by
the same margin, as one would expect compared to the results in Figure 5b.

In comparing the generated images by k-GAN and GAN on CLEVR (Figure 6b) we noticed that the
former generated more crowded scenes (containing multiple large objects in the center), and more
frequently generated objects with distorted shapes or mixed colors. On the other hand we found
cases in which k-GAN generated scenes containing “flying” objects, a by-product of the fixed order
in which we apply (3). We asked humans to score images based on these properties, which confirmed
these observations (see Figure 6b), although some differences are small.

Figure 7 reveals the distribution of the number of (geometric) objects in the images generated by
k-GAN and GAN on CLEVR.
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Figure 7: Results of human evaluation. Number of (geometric) objects in generated images by k-GAN
(k=3,4,5) and GAN on CLEVR. A value of -1 implies a majority vote could not be reached.

A.2 Latent Traversal

We explore the degree to which the relational structure affects our initial independence assumption
about objects. If it were to cause the latent representations to be fully dependent on one another then
our approach would no longer be compositional in the strict sense. Note that although we have a clear
intuition in how this mechanism should work, there is no corresponding constraint in the architecture.
We conduct an experiment in which we traverse the latent space of a single latent vector in k-GAN
rel., by adding a random vector to the original sample with fixed increments and generating an image
from the resulting latent vectors. Several examples can be seen in Figure 8b. In the first row it can be
seen that as we traverse the latent space of a single component the blue digit 9 takes on the shape
of a 3, whereas the visual presentation of the others remain unaffected. Similarly in the second and
third row the green digits are transformed, while other digits remain fixed. Hence, by disentangling
objects at a representational level the underlying representation is more robust to common variations
in image space.

We observe this behavior for the majority of the generated samples, confirming to a large degree
our own intuition of how the relational mechanism should be utilized. When we conduct the same
latent traversal on the latent space of GAN for which the information encoding different objects is
entangled, it results in a completely different scene (see Figure 8a).
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Figure 8: Three generated images by a) GAN and b) 5-GAN rel. bg., when traversing the latent space
of a single (object) generator at different increments. On the right it can be seen that in each case
only a single digit is transformed, whereas the visual presentation of the others remains unaffected.
In the case of GAN (left) the entire scene changes.
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A.3 FID Study
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Figure 9: The best FID obtained by GAN and k-GAN following our grid search. The best configura-
tions were chosen based on the smallest average FID (across 5 seeds). Standard deviations across
seeds are illustrated with error bars.

We train k-GAN and GAN on each dataset, and compare the FID of the models with the lowest
average FID across seeds. On all datasets but CLEVR we find that k-GAN compares favorably to
our baseline, although typically by a small margin. A break-down of the FID achieved by different
variations of k-GAN reveals several interesting observations (Figure 9). In particular, it can be
observed that the lowest FID on Independent MM is obtained by 4-GAN without relational structure.
This is surprising as each component is strictly independent and therefore 4-GAN ind. is unable to
consistently generate 3 digits. Indeed, if we take a look at the generated samples in Figure 11, then we
frequently observe that this is the case. It suggests that FID is unable to account for these properties of
the generated images, and renders the small FID differences that we observed inconclusive. Figure 9
does reveal some large FID differences across the different variations of k-GAN on Triplet MM, and
RGB Occluded MM. It can be observed that the lack of a relational mechanism on these datasets is
prohibitive (as one would expect), resulting in poor FID for k-GAN ind. Simultaneously it confirms
that the relational mechanism is properly utilized when relations are present.
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A.3.1 Best configurations

Table 1 reports the best hyper-parameter configuration for each model that were obtained following
our grid search. Configurations were chosen based on the smallest average FID (across 5 seeds) as
reported in Figure 9. Each block corresponds to a dataset (from top to bottom: Independent MM,
Triplet MM, RGB Occluded MM, CIFAR10 + MM, CLEVR)

model gan type norm. penalty blocks heads share bg. int. β1 β2 λ

GAN NS-GAN spec. none x x x x 0.5 0.999 10
3-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
4-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
5-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
3-GAN rel. NS-GAN spec. WGAN 1 1 no x 0.9 0.999 1
4-GAN rel. NS-GAN spec. WGAN 1 1 no x 0.9 0.999 1
5-GAN rel. NS-GAN spec. WGAN 2 1 no x 0.9 0.999 1

GAN NS-GAN spec. none x x x x 0.5 0.999 1
3-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
4-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
5-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
3-GAN rel. NS-GAN spec. WGAN 1 1 no x 0.9 0.999 1
4-GAN rel. NS-GAN spec. WGAN 1 2 no x 0.9 0.999 1
5-GAN rel. NS-GAN spec. WGAN 2 1 no x 0.9 0.999 1

GAN NS-GAN spec. none x x x x 0.5 0.999 1
3-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
4-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
5-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
3-GAN rel. NS-GAN none WGAN 2 2 yes x 0.9 0.999 1
4-GAN rel. NS-GAN none WGAN 2 2 no x 0.9 0.999 1
5-GAN rel. NS-GAN none WGAN 2 2 yes x 0.9 0.999 1

GAN NS-GAN none WGAN x x x x 0.9 0.999 1
3-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
4-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
5-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
3-GAN rel. bg. NS-GAN none WGAN 2 1 yes yes 0.9 0.999 1
4-GAN rel. bg. NS-GAN none WGAN 2 1 yes yes 0.9 0.999 1
5-GAN rel. bg. NS-GAN none WGAN 2 2 yes no 0.9 0.999 1

GAN WGAN none WGAN x x x x 0.9 0.999 1
3-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
4-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
5-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
3-GAN rel. bg. NS-GAN none WGAN 2 1 no yes 0.9 0.999 1
4-GAN rel. bg. NS-GAN none WGAN 1 2 no no 0.9 0.999 1
5-GAN rel. bg. NS-GAN none WGAN 2 2 no no 0.9 0.999 1

Table 1: The best hyper-parameter configuration for each model as were obtained after conducting a
grid search. Configurations were chosen based on the smallest average FID (across 5 seeds).
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B Experiment Details

B.1 Model specifications

The generator and discriminator neural network architectures in all our experiments are based on
DCGAN [26].

Object Generators k-GAN ind. introduces K = k copies of an object generator (i.e. tied weights,
DCGAN architecture) that each generate and image from an independent sample of a 64-dimensional
UNIFORM(-1, 1) prior P (Z).

Relational Structure When a relational stage is incorporated (k-GAN rel.) each of the zi ∼ P (Z)
are first updated, before being passed to the generators. These updates are computed using one or
more attention blocks [32], which integrate Multi-Head Dot-Product Attention (MHDPA; [29]) with
a post-processing step. A single head of an attention block updates zi according to (2).

In our experiments we use a single-layer neural network (fully-connected, 32 ReLU) followed by
LayerNorm [3] for each of MLPquery, MLPkey, MLPvalue. We implement MLPup with a two-layer
neural network (each fully-connected, 64 ReLU), and apply LayerNorm after summing with zi.
Different heads in the same block use different parameters for MLPquery, MLPkey, MLPvalue, MLPup.
If multiple heads are present, then their outputs are concatenated and transformed by a single-layer
neural network (fully-connected, 64 ReLU) followed by LayerNorm to obtain the new ẑi. If the
relational stage incorporates multiple attention blocks that iteratively update zi, then we consider two
variations: using unique weights for each MLP in each block, or sharing their weights across blocks.

Background Generation When a background generator is incorporated (eg. k-GAN rel. bg) it
uses the same DCGAN architecture as the object generators, yet maintains its own set of weights. It
receives as input its own latent sample zb ∼ P (Zb), again using a UNIFORM(-1, 1) prior, although
one may in theory choose a different distribution. We explore both variations in which zb participates
in the relational stage, and in which it does not.

Composing In order to obtain the final generated image, we need to combine the images generated
by each generator. In the case of Independent MM and Triplet MM we simply sum the outputs of the
different generators and clip their values to (0, 1). On RGB Occluded MM we combine the different
outputs using alpha compositing, with masks obtained by thresholding the output of each generator
at 0.1. On CIFAR10 + MM and CLEVR we require each of the object generators to generate an
additional alpha channel by adding an additional feature map in the last layer of the generator. These
are then combined with the generated background (opaque) using alpha compositing, i.e. through
repeated application of (3).

B.2 Hyperparameter Configurations

Each model is optimized with ADAM [20] using a learning rate of 0.0001, and batch size 64 for
1 000 000 steps. Each generator step is followed by 5 discriminator steps, as is considered best
practice in training GANs. Checkpoints are saved at every 20 000th step and we consider only the
checkpoint with the lowest FID [16] for each hyper-parameter configuration. FID is computed using
10 000 samples from a hold-out set.

Baseline We conduct an extensive grid search over 48 different GAN configurations to obtain a
strong GAN baseline on each dataset. It is made up of hyper-parameter ranges that were found to be
successful in training GANs on standard datasets [23].

We consider [SN-GAN [12] / WGAN [1]], using [NO / WGAN [15]] gradient penalty with λ [1 / 10].
In addition we consider these configurations [WITH / WITHOUT] spectral normalization [24]. We
consider [(0.5, 0.9) / (0.5, 0.999) / (0.9, 0.999)] as (β1, β2) in ADAM. We explore 5 different seeds
for each configuration.

k-GAN We conduct a similar grid search for the GANs that incorporate our proposed structure.
However, in order to maintain a similar computational budget to our baseline we consider a subset
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of the previous ranges to compensate for the additional hyper-parameters of the different structured
components that we would like to search over.

In particular, we consider SN-GAN with WGAN gradient penalty, with a default λ of 1, [WITH
/ WITHOUT] spectral normalization. We use (0.9, 0.999) as fixed values for (β1, β2) in ADAM.
Additionally we consider K = [3 / 4 / 5] copies of the generator, and the following configurations for
the relational structure:

• Independent
• Relational (1 block, no weight-sharing, 1 head)
• Relational (1 block, no weight-sharing, 2 heads)
• Relational (2 blocks, no weight-sharing, 1 head)
• Relational (2 blocks, weight-sharing, 1 head)
• Relational (2 blocks, no weight-sharing, 2 heads)
• Relational (2 blocks, weight-sharing, 2 heads)

This results in 42 hyper-parameter configurations, for which we each consider 5 seeds. We do not
explore the use of a background generator on the non-background datasets. Correspondingly, we only
explore variations that incorporate the background generator on the background datasets. In the latter
case we search over an additional hyper-parameter that determines whether the latent representation
of the background generator should participate in the relational stage or not.

B.3 Human Study

We asked human raters to compare the images generated by k-GAN (k = 3, 4, 5) to our baseline on
RGB Occluded MM, CIFAR10 + MM and CLEVR, using the configuration with a background genera-
tor for the last two datasets. For each model we select the 10 best hyper-parameter configurations,
from which we each generate 100 images. We conduct two different studies 1) in which we compare
images from k-GAN against GAN and 2) in which we asked raters to answer questions about the
content (properties) of the images.

Comparison We asked reviewers to compare the quality of the generated images. We asked up to
three raters for each image and report the majority vote or “none” if no decision can be reached.

Properties For each dataset we asked (up to three raters for each image) the following questions.

On RGB Occluded MM we asked:

1. How many [red, blue, green] shapes are in the image? Answers: [0, 1, 2, 3, 4, 5]
2. How many are recognizable as digits? Answers: [0, 1, 2, 3, 4, 5]
3. Are there exactly 3 digits in the picture, one of them green, one blue and one red? Answers:

Yes / No

On CIFAR10 + MM we asked these same questions, and additionally asked:

4. Does the background constitute a realistic scene? Answers: Yes / No

On CLEVR we asked the following set of questions:

1. How many shapes are in the image? Answers: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2. How many are recognizable as geometric objects? Answers: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
3. Are there any objects with mixed colors (eg. part green part red)? Answers: Yes / No
4. Are there any objects with distorted geometric shapes?: Answers: Yes / No
5. Are there any objects that appear to be floating? Answers: Yes / No
6. Does the scene appear to be crowded? Answers: Yes / No
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C Overview of Real and Generated Samples

Generated samples are reported for the best (lowest FID) structured model, as well as the best baseline
model for each dataset.

C.1 Independent Multi MNIST

Figure 10: Real
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C.1.1 Structured GAN

Figure 11: 4-GAN ind. with spectral norm and WGAN penalty
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C.1.2 GAN

Figure 12: NS-GAN with spectral norm
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C.2 Triplet Multi MNIST

Figure 13: Real
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C.2.1 Structured GAN

Figure 14: 4-GAN rel. (1 block, 2 heads, no weight sharing) with spectral norm and WGAN penalty
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C.2.2 GAN

Figure 15: NS-GAN with spectral norm
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C.3 RGb-Occluded Multi MNIST

Figure 16: Real
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C.3.1 Structured GAN

Figure 17: 3-GAN rel. (2 blocks, 2 heads, no weight sharing) with spectral norm and WGAN penalty
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C.3.2 GAN

Figure 18: NS-GAN with spectral norm
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C.4 RGB-Occluded Multi MNIST + CIFAR10

Figure 19: Real
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C.4.1 Structured GAN

Figure 20: 5-GAN rel. (1 block, 2 heads, no weight sharing) bg. (no interaction) with WGAN penalty

23



C.4.2 GAN

Figure 21: WGAN with WGAN penalty
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C.5 CLEVR

Figure 22: Real

25



C.5.1 Structured GAN

Figure 23: 3-GAN rel. (2 heads, 2 blocks, no weight sharing) bg. (with interaction) with WGAN
penalty.
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C.5.2 GAN

Figure 24: WGAN with WGAN penalty
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