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Abstract

Recurrent world models have recently been shown to perform well on reinforcement
learning tasks, where spatio-temporal representations are learned in an unsuper-
vised manner in simulated game environments. This work is an attempt to improve
the world model by incorporating a content-based attention mechanism in the
dynamics modeling module which is used to simulate a training environment.
The proposed attention mechanism uses the dynamics from the recurrent neural
network (RNN) with the encoded visual information to create a focused spatial
representation of the input. Further, a gating network is used during training of
the visual encoding module which helps in predicting descriptive factorized latent
feature vectors, which tend to generate more realistic states when combined with
attention in an unsupervised manner. The efficacy of the approach is demonstrated
through experiments in VizDoom game environment.

1 Introduction

There has been growing interest in model based reinforcement learning (RL) with a focus on learning
descriptive abstract representations of sensory input. Task specific spatio-temporal abstractions
of inputs from the environment form a key component for agents trained using these techniques
to act optimally. The ability of the agent to efficiently utilize these learned abstractions to train
in a simulated environment with no external supervision [1], analogous to “dreaming" in humans,
depends directly on the effectiveness of the predictive abstraction in capturing rich, disentangled
representations of raw sensory data.

The focus of this work is on improving the richness and disentanglement of learned sensory abstrac-
tions used for reconstruction by using disentangled visual embeddings along with selective spatial
attention and global context. Using a gating principle similar to [2] during the training of the visual
encoding module on sequences of images encourages the latent representation to capture disentangled
features of variation. Furthermore, focusing explicitly on spatial content relevant to the transition
dynamics leads to a richer spatial embedding. This is achieved by utilizing the dynamics from the
RNN with the encoded visual information as the context, to attend to relevant details of the visual
embedding. This allows focusing only on those visual transformations which are a consequence of
the chosen action. Augmenting global content of the visual input with fine-grained focus on specific
parts allows for more a detailed encoding without compromising significantly on the big picture.

Combined, these local and global contexts lead to significantly improved world models, as demon-
strated in the experiments in VizDoom [3] environment in Section 4.
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2 Background

2.1 World Model

Several recent papers have focused on learning accurate models of the environment using model based
reinforcement learning [1], [4], [5], [6] . Recurrent world models introduced in [1] use an internal
world model to train an agent entirely on a simulated environment and transfer the learned policy
effectively to the real world. The authors propose an approach and an architecture inspired by how
humans perceive and act in the world, through learning of abstract spatio-temporal representations.
They use a simple model composed of three distinct components which are trained independently,
viz., a visual sensory component V, a memory component M and a decision making component C.

V is a Variational Auto-Encoder (VAE) [7] and is used to compress the visual information the agent
receives at each time step from the environment. Given a compressed representation z from V, M is
used to model the dynamics and predict the next z. A Mixed Density Network [8] combined with
a recurrent neural network (MDN-RNN) is used as M, which models P (zt+1|at, zt, ht), where at
is the action taken at time t and ht is the hidden state of the RNN at time t. Instead of predicting z
directly, M models the probability density function that generates z to capture the stochastic variation
of the environment. C is a RL controller that uses the ht from the RNN to determine the best action
to be chosen to maximize cumulative reward in an episode. One of the key contributions of this work
is that M allows the controller to be trained on simulated environment roll-outs using the internal
environment model, and hence to be trained in a completely unsupervised manner. The policies
learned in the agent’s mental model are then transferred to the real environment. The authors use
Co-variance Matrix Adaptation Evolution Strategy (CMA-ES) [9], [10] to train C.

2.2 Learning Disentangled Representations

Generative models for tasks such as modelling visual representations or learning the dynamics of
an environment have to deal with the problem of entangled representations, making it challenging
to interpret these representations and also making it harder for the dynamic model to re-use repre-
sentation components in future time steps. In recent work on continuation learning [2], the authors
propose an architecture to produce factorized representations of a given visual image. A gating layer
is used which receives input from two consecutive time steps, and selects a small set of gating units
to characterize the dynamics between xt−1 and xt. To learn such a gating function, the authors use
scheduled weight sharpening [11], which creates a smooth, differentiable loss function to select gates.
In their work, xt−1 and xt are concatenated and passed through a linear layer. wi are outputs of the
linear layer and transformed in every iteration(γ) according to equation 1.
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3 Proposed Architecture

The architecture proposed in this work is in Figures 1 and 2. Roll-outs are first generated from the
environment using a random policy (random action repeated for n iterations, where n is uniformly
sampled from [1,10]) to generate sequences of images to train the VAE. The VAE is trained using a
gated network as shown in Figure 1, where two consecutive frames are fed to the visual encoder and
the generated embeddings are passed to a gating network to create a fused embedding which is then
used by the decoder to reconstruct the image. The gating mechanism causes visual embeddings from
the encoder to be disentangled, where each dimension of the embedding controls an important part of
the scene independently.

After training the VAE module, the memory network M, implemented using Long Short-Term
Memory (LSTM)[12] is trained. In addition to the LSTM network, a content based attention
mechanism is introduced which uses the hidden outputs from the LSTM and the activation of an
intermediate convolutional layer from the VAE encoder for context. The convolutional feature map
from the conv3 layer of an encoder with 4 convolutional layers is used along with the hidden state
of the LSTM to obtain attention weights, which when up-sampled back to the original image size
produce the spatial region that the model decides to focus on. Further, the attention weighted encoding
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Figure 1: Visual Gating Architecture

is concatenated with the output from the LSTM and then passed through a linear layer to generate the
parameters for a Mixture of Gaussians. The model learns to attend to the relevant portion of the input
image while the MDN is trained to maximize the log-likelihood of the label zt under the mixture of
distributions generated by the network.

Figure 2: MDN-RNN with Attention: The MDN is trained to maximize the log-likelihood of zt
under the mixture of distributions generated by the network.

Based on the trained V and M modules, a controller C implemented as a simple linear layer is trained
using CMA-ES algorithm to maximize the expected reward on the simulated environment generated
by the M network.

4 Experiments

The proposed model was tested in the CarRacing environment from OpenAI Gym [13] and ViZDoom
[3] (DoomTakeCover-v0). VizDoom was found to be relatively more challenging with scope for
attending to different parts of images while generating episodes via simulation. For demonstration,
results on the ViZDoom environment are presented in Figure 3. The input frame is shown in the left
column and the middle column shows where the model chose to attend while generating the next
frame. The right-most column shows the generated next frame. Crucially, these are examples from a
simulated roll-out, demonstrating the detail which gets captured even during simulation.
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Figure 3: Results on DoomEnv: Left: Input frame, Middle: Attention map, Right: Simulated frame
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