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1 Introduction

Large and diverse datasets have driven recent progress in fields such as computer vision and natural
language processing. We currently lack the equivalent richness for physical understanding. There
are several large datasets (Yu et al., 2016; Levine et al., 2016; Calli et al., 2015), but they either only
contain raw annotated video under highly varying conditions or only involve a small set of objects.

Figure 1: Data capturing
hardware.

We introduce a new dataset of pushing dynamics, a fundamental
robotics problem which has been studied extensively Mason (1986);
Lynch et al. (1992); Bauza & Rodriguez (2017), yet still remains
poorly characterized for general objects. We have gathered data
resulting from a robot pushing planar objects on a surface, tracking
their pose with high precision. Compared to Yu et al. (2016), who
gather many pushes for 11 shapes, we perform 250 pushes for 250
objects, which vary both in terms of shape and weight distribution.
RGBD images of the interactions is also available to complement
the accurate recording of the object and pusher’s positions.

We hope this dataset can be used both for the robotics and computer
vision communities to improve and generalize the manipulation capa-
bilities of robots. In particular, this dataset can serve as a benchmark
for a variety of tasks including meta-learning (i.e. learning to learn),
video prediction and model learning.

2 Dataset description

The dataset presented in this paper is based on collecting high-fidelity data resulting from the robot
executing pushes on a diverse set of objects. We refer to this dataset as the OmniPush dataset inspired
by the Omniglot dataset Lake et al. (2015) which contains a large variety of handwritten characters.
In our dataset, one of the main novelties is the study of a manipulation task such as pushing for a
large set of different objects.

The pushing system used for the data collection, shown in Fig. 1, is based on an industrial robot arm
that pushes a given object over a flat surface. We introduce variations on the pushed objects to study
how the dynamics of pushing change depending on the object, but constrain the rest of the setup to be
the same during the experiments.
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Figure 2: Object made of the four possible sides. Weights can
be attached in the holes. There is an extra hole in the triangle,
covered by the wafers. From right to bottom, the sides of the shape
are triangle (94.1g), concave (74.1g), circle (67.5g) and rectangle
(31.2g). Following our convention for naming objects, we denote
this object as ’2C1a3a4a’.

2.1 Shapes

The objects considered are built in a puzzle fashion from a set of aluminum pieces, as shown in Fig. 2.
All objects share a square central piece (100.5g) that carries the Vicon trackers and thus they are
all tracked equally with sub-millimeter accuracy. To this central piece, we magnetically attach 4
different sides so that they lay flat on the support surface and contribute to the frictional interactions.
Each side is selected among four differently shaped pieces, leading to 70 different objects with nearly
uniform mass distribution but different shape (Vicon markers and magnets have almost negligible
weight). Figure 2 shows an example object made with each possible side. Each of the four shapes for
the sides is denote with a different number 1-4.

To add more diversity, we change the center of friction of some objects by altering their mass
distribution. All sides except the rectangular one allow the addition of extra weight. We considered
two different extra weights: small (b) and large (c). No extra weight is denoted as a. The triangular
side allows the extra weight to be placed in two different positions (exterior weight is denoted as B or
C and interior as b or c). The biggest weight is around 5 times heavier than the smallest side and we
observed that adding extra weight clearly affects the dynamics of pushing.

The set of 250 objects explored consists of 3 groups, depending on the extra weights added:

• 70 objects without extra weight. We explore all objects that can be assembled using 4
different sides and no extra weights, up to rotational symmetries.

• 90 objects with one extra weight. We added only one extra weight (small or large) to one
of the sides. To improve the structure of the dataset, we collected 45 objects with a small
weight and the same 45 shapes with a large weight. For example, if we randomly selected
the object 2C1a3a4a shown in Fig. 2, then we also included the object 2c1a3a4a.

• 90 objects with two small extra weights. We randomly select objects made of the possible
sides: 1a, 1b, 2a, 2b, 2B , 3a, 3b and 4a (without large weights) and take
only those with two small weights. We get objects of the form: 1b1b3a2a and 1a2B2a3b.

2.2 Data collection

The data is collected with an ABB IRB 120 robot arm with a cylindrical pusher made of steel attached
at its end effector. The surface where the frictional interaction happens is an ABS (Acrylonitrile
Butadiene Styrene) sheet. The pusher’s position is accurately recorded using the robot kinematics
while the objects are tracked using Vicon cameras. The pushes are also recorded using a RealSense
camera that provide RGBD images of the interaction. The data collection is autonomous and
independent of the object. Given an object to explore, we collect data of its dynamics under pushing
by following this scheme:

1. Put the pusher at a random position between 9 to 10cm from the object’s center. This
prevents the pusher from starting in a position that collides with the object.

2. Select a random direction and make a 5cm straight push for 1s (the interaction is close
to quasistatic, meaning that the object stops moving as soon as the robot stops pushing it
(Bauza & Rodriguez, 2017). Repeat 5 times without changing the pusher position between
the end of one push and the start of the next.

3. Go back to step 1.

This scheme applies to all pushes unless the object ends outside a predefined region of the workspace.
In that case, the robot pulls the object back to the center of the workspace and data collection
continues at step 1. To increase the frequency of pushes with contact, we set a condition on how to
randomly select the direction of each push. If there was contact in the previous push and the pusher
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starts from where it ended, then with probability 0.8 we select an angle that only deviates ±90◦ from
the previous pushing direction. Otherwise, the direction of pushing is uniformly sampled across all
angles. If the pusher would end outside the workspace we resample the direction of pushing.

In total, we collected 250 pushes for each of the 250 objects, making more than 60K accurately
recorded pushes. In addition, we also collected 2500 pushes for 5 of these objects and 1000 for the
set of objects used in Yu et al. (2016) following the same process. We believe this dataset contains
a diverse and complex set of examples that are sufficient to capture some of the most fundamental
characteristics of pushing such as the effect of different pressure distributions and the effect of the
shape of an object. The dataset is available at mit.edu/mcube/omnipush-dataset/.

2.3 Out-of-distribution objects and surface

The dataset also includes 1000 pushes collected with the proposed protocol for each of the 11 objects
used in Yu et al. (2016). Similarly, we also collected 1000 pushes for 5 of the 250 our new objects
and 5 of the 11 old objects from Yu et al. (2016). These sets are intended to give us an estimate of
how much a given algorithm can generalize to related tasks that are outside the original distribution
of tasks. Therefore in addition to the transfer between tasks inside the same distribution as previous
meta-learning datasets, we can check for dataset distribution bias.

Figure 3: Out-of-distribution objects. These objects,
made of a different material, stainless steel, are much
heavier and have different shapes compared to the 250
objects used to build our meta-learning dataset. Their
mass distribution is uniform. More details on these
objects can be found at Yu et al. (2016).

2.4 Data description

The data from each push contains both RGBD images and information of the object and pusher states.

Poses: for every push we track x, y, θ of the object, x, y position of the pusher and vx, vy velocity
of the pusher at a rate of 250Hz. A particularly interesting subset of this data includes the initial
pose of both the object and the pusher along with the velocity of the latter and the final position and
orientation of the object. Making the assumption that the result of the push does not depend on the
absolute pose of the object, we can remove 3 dimensions by changing to the frame of the object
(which sets x = y = θ = 0 for the object); we can further remove another dimension by using the
fact that the pusher moves at constant speed and therefore only represent its angle. Therefore, the
target is always 3 dimensions (∆x,∆y,∆θ) and 3,5 and 7 inputs depending on the assumptions.

RGBD: We also extend these data by including RGBD recording of the pushes using a RealSense
camera. This results in a complete dataset that can be studied directly from a vision perspective or by
using the accurate positions recovered by the tracking system.

2.5 Preliminary evaluation

We focus on studying the poses part of the dataset mapping from 3 inputs (x, y position of the pusher
with respect to the object and θ the angle of the relative velocity of the pusher to the object) to 3
outputs: change in x, y, θ of the object. Results can be seen in table 1. First, we estimated the Bayes
error rate: we use 5 shapes with 2500 points each and train a separate neural network per shape,
getting an error of 4% of the original variance. Bauza & Rodriguez (2017) determined 2500 pushes to
be a point beyond which extra data helped little; therefore, it is likely the Bayes error rate (irreducible
noise) is around that order of magnitude (we cannot estimate it exactly without infinite data). This
noise can be due to small errors in actuation or sensing or non-uniformities of the surface which
makes our dimension reduction incorrect.

We try two main approaches: an object-independent neural network that pools the data from all
objects into a single dataset and a meta-learning approach that builds object-specific models. Meta-
learning, or learning to learn, aims to leverage similarities between tasks to learn a learning algorithm
that is very data-efficient in an unseen task. First, we can see that objects have roughly the same

3

mit.edu/mcube/omnipush-dataset/


Evaluation MSE distance equivalent

Predicting no movement 1.00 21.6 mm
Out of distribution obj.&surface (no meta-learning) .51 15.4 mm
Out of distribution obj.&surface (Alet et al. (2018)) .34 12.5 mm
Out of distribution objects (no meta-learning) .34 12.7 mm
Out of distribution objects (Alet et al. (2018)) .30 11.8 mm
Out of distribution surface (no meta-learning) .21 9.8 mm
Out of distribution surface (Alet et al. (2018)) .09 6.6 mm
Original distribution (no meta-learning) .14 8.1 mm
Original distribution (Alet et al. (2018)) .08 6.1 mm
Estimated Bayes error rate .04 4.3 mm

Table 1: Summary of results. Different datasets are separated by horizontal lines.

movement, since an object-independent baseline (no meta-learning) captures 86% of the variance.
For the meta-learning algorithm we use BounceGrad (Alet et al., 2018), which outperformed MAML
on the similar pushing dataset of Yu et al. (2016), which almost halves the mean squared error.

There is still the challenge of generalizing with fewer than 50 points and generalizing to objects
outside the distribution; for which performance was significantly better than chance but much worse
compared to the within-distribution objects.

3 Conclusion

Our goal is that this dataset can serve as a benchmark for several applications both in computer vision
and robotics. Some of the applications that we envision are:

• Meta-learning. By providing a large dataset with many different objects, we believe it is
possible to learn the dynamics of a new object from few examples by using the data and
learned model from previous objects.

• Video prediction. RGBD is recorded for all the interactions. This opens the possibility to
predict the outcome of a given sequence of images using video prediction.

• General dynamics learning. Aside from learning each shape independently, we believe
this dataset can help to build pushing models that generalize to different object shapes and
mass distributions.
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