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Abstract

Model interpretability and systematic, targeted model adaptation present central
challenges in deep learning. In the domain of intuitive physics, we study the task
of visually predicting stability of block towers with the goal of understanding and
influencing the model’s reasoning. Our contributions are two-fold. Firstly, we intro-
duce neural stethoscopes as a framework for quantifying the degree of importance
of specific factors of influence in deep networks as well as for actively promoting
and suppressing information as appropriate. In doing so, we unify concepts from
training with auxiliary and adversarial losses. Secondly, we deploy the stethoscope
framework to provide an in-depth analysis of a state-of-the-art neural network for
stability prediction, specifically examining its physical reasoning.

Previous work has shown that neural networks are highly capable of learning physical tasks such as
stability prediction. However, unlike approaches using physics simulators [Furrer et al., 2017, Wu
et al., 2017], learning based approaches pose a challenge for model interpretability: Did the model
gain a sound understanding of the physical principles or does it take short-cuts following visual cues
based on correlations in the data? Occlusion-based attention analyses are a first step in this direction,
but insights gained from this are limited [Lerer et al., 2016, Groth et al., 2018]. In this work we
introduce stethoscopes to enhance interpretability and influence the learning process on the task of
stability prediction, but present it in the following as a general framework which can be applied to
any set of tasks.

1 Methodology: Neural Stethoscopes
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Figure 1: The stethoscope framework. The main network (blue), comprised of encoder and decoder,
is trained for global stability prediction of block towers. The stethoscope (orange) is trained to predict
a nuisance parameter (local stability) with input is Z, a learned feature from an arbitrary layer of the
main network. The stethoscope loss is back-propagated with weighting factor λ to the main network.
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GloballyLocally Dataset
Scenarios
4K total
1K per category (A – D)

Cameras
16 rendering angles
(per scenario)

Randomisation
block colours, textures, 
lights (per scenario)

Images
64K RGB images 
resolution: 224 x 224

Splits
train : val : test 

70 : 15 : 15

Figure 2: We have four qualitative scenarios (A-D) combining global and local (in)stability. The
dashed line shows the projection of the cumulative centre of mass of the upper tower (red, yellow
and blue block) whereas the dotted line depicts the projection of the local centre of mass of the red
block. A tower is globally stable, if and only if the global centre of mass is always supported whereas
the individual local centre of masses are not indicative of global structure stability. Global and local
centre of masses for the green, yellow and blue block have been omitted for clarity of presentation.

In supervised deep learning, we typically look for a function fθ : X Ñ Y with parameters θ that
maps an input x P X to its target y P Y . Without loss of generality, we rewrite fθ as the composition
of the encoder hencθ : X Ñ Z, which maps the input to an intermediate representations z P Z z P Z,
and the decoder hdecθ : Z Ñ Y , which maps features to the output. Let the stethoscope be defined
as an arbitrary function hsψ : Z Ñ S with parameters ψ. We define two loss functions: Lypθq,
which measures the discrepancy between predictions fθ and the true task y and Lspθ, ψq, which
measures the performance on the supplemental task (see Figure 1). The weights of the stethoscope
are updated as ´∆ψ9∇ψLspθ, ψq to minimise Lspθ, ψq and the weights of the main network as
´∆θ9∇θLy,spθ, ψq to minimise the energy

Ly,spθ, ψq “ Lypθq ` λ ¨ Lspθ, ψq. (1)

By choosing different values for the constant λ we obtain three very different use cases:

Analytic Stethoscope (λ “ 0) Here, the gradients of the stethoscope, which acts as a passive
observer, are not used to alter the main model. This setup can be used to interrogate learned feature
representations: if the stethoscope predictions are accurate, the features can be used to solve the task.

Auxiliary Stethoscope (λ ą 0) The encoder is trained with respect to the stethoscope objective,
hence enforcing correlation between main network and supplemental task. This setup is related to
learning with auxiliary tasks, and helpful if we expect the two tasks to be beneficially related.

Adversarial Stethoscope (λ ă 0) By setting λ ă 0, we train the encoder to maximise the
stethoscope loss (which the stethoscope still tries to minimise), thus encouraging independence
between main network and supplemental tasks. This is effectively an adversarial training framework
and is useful if features required to solve the stethoscope task are a detrimental nuisance factor.

In auxiliary and adversarial mode, we attach the stethoscope to the main network’s last layer before
the logits in a fully connected manner. This setup proved to have the highest impact on the learning
process of the main network. The stethoscope itself is implemented as a two-layer perceptron with
ReLU activation and trained with sigmoid or softmax cross-entropy loss on its task S.

2 Vision-Based Stability Prediction of Block Towers
We follow the state-of-art approach on visual stability prediction of block towers and examine as well
as influence its learning behaviour. We introduce a variation of the ShapeStacks dataset from Groth
et al. [2018] which is particularly suited to study the dependence of network predictions on visual
cues. We then examine how suppressing or promoting the extraction of certain features influences the
performance of the network using neural stethoscopes. We choose the Inception-v4 network [Szegedy
et al., 2017] as it yields state-of-the-art performance on stability prediction [Groth et al., 2018].

2



!" = 0 !" = 1

! &
=
0

! &
=
1

A

.99

C

.94

B

.94

D

.97

(a) Trained on All: Iacc “ 0.96
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(b) Trained on Easy: Iacc “ 0.82
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(c) Trained on Hard: Iacc “ 0.51

Figure 3: The influence of local instability on global stability prediction. In setup (a) we train on all 4
tower categories (indicated by green frames). Global stability prediction accuracies on per-category
test splits are reported in the bottom right grey boxes. In (b) we train solely on easy scenarios (A &
D) where global and local stability are positively correlated. In (c) we only present hard scenarios
during training featuring a negative correlation between global and local stability. The performance
differences clearly show that local stability influences the network’s prediction for global stability.

Dataset As shown in Groth et al. [2018], a single-stranded tower of blocks is stable if, and only
if, at every interface between two blocks the centre of mass of the entire tower above is supported
by the convex hull of the contact area. If a tower satisfies this criterion, i.e., it does not collapse, we
call it globally stable. To be able to quantitatively assess how much the algorithm follows visual
cues, we introduce a second label: We call a tower locally stable if, and only if, at every interface
between two blocks, the centre of mass of the block immediately above is supported by the convex
hull of the contact area. Intuitively, this measure describes, if taken on its own without any blocks
above, each block would be stable. We associate binary prediction tasks yG and yL to respective
global and local stability where label y “ 0 indicates stability and y “ 1 instability. Global and local
instability are neither mutually necessary nor sufficient, but can easily be confused visually which is
demonstrated by our experimental results. We create a simulated dataset1 with 4,000 block tower
scenarios divided into four qualitative categories (cf. Figure 2). The dataset is divided into an easy
subset, where local and global stability are always positively correlated, and a hard subset, where this
correlation is always negative. The dataset will be made available online.

Local Stability as a Visual Cue Based on the four categories of scenarios described in Figure 2,
we conduct an initial set of experiments to gauge the influence of local stability on the network
predictions. Figure 3 shows a strong influence of local stability on the prediction performance. When
trained on the entire, balanced data set, the error rate is three times higher for hard than for easy
scenarios (6% vs. 2%). When trained on easy scenarios only, the error rate even differs by a factor of
13. Trained on hard scenarios only, the average performance across all four categories is on the level
of random chance (51%), indicating that negatively correlated local and global stability imposes a
much harder challenge on the network.

3 Using Neural Stethoscopes to Guide the Learning Process
After demonstrating the influence of local stability on the task of global stability prediction we turn
our attention to the use of neural stethoscopes to quantify and actively mitigate this influence.
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Figure 4: Promoting complementary feature extraction with auxiliary stethoscopes.

Promotion of Complementary Information We test the hypothesis that fine-grained labels of
instability locations help the main network to grasp the correct physical concepts. To that end, we

1We use the MuJoCo physics engine [Todorov et al., 2012] for rendering and stability checking.
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(a) Adversarial Stethoscope
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(b) Auxiliary Stethoscope

Figure 5: Successful debiasing by suppressing a nuisance factor with adversarial training.

consider the setup from Figure 3c where the training data only consists of hard scenarios with a
baseline performance of 51%. The main network is trained on global stability while the stethoscope
is trained on predicting the origin of global instability, namely the interface at which the instability
occurs. Figure 4 shows that auxiliary training substantially improves the performance for weighting
parameters λ P r0.5, 16s. However, for very small values of λ, the contribution of the additional loss
term is too small while for large values, performance deteriorates to the level of random chance as a
result of the primary task being far out-weighted by the auxiliary task.

Suppression of Nuisance Information Results from Figure 3 indicate that the network might use
local stability as a visual cue to make biased assumptions about global stability. We now investigate
whether it is possible to debias the network by forcing it to pay less attention to local stability. To that
end, we focus on the scenario shown in Figure 3b, where we only train the network on global stability
labels for easy scenarios. As shown in Figure 3b, the performance of the network suffers significantly
when tested on hard scenarios where local and global stability labels are inversely correlated.

The hypothesis is that forcing the network not to focus on local stability weakens this bias. In Figure 5,
we use active stethoscopes (λ ‰ 0) to test this hypothesis. We train a stethoscope on local stability
on labels of all categories (in a hypothetical scenario where local labels are easier to obtain than
global labels) and use both the adversarial and the auxiliary setup in order to test the influence of
suppressing and promoting accessibility of information relevant for local stability in the encoded
representation, respectively. In Figure 5, the results of both adversarial and auxiliary training are
compared to the baseline of λ “ 0, which is equivalent to the analytic stethoscope setup.

Figure 5a shows that adversarial training does indeed partly remove the bias and significantly
increases the performance on hard scenarios while maintaining its high accuracy on easy scenarios.
With an increasing magnitude of λ, we observe a monotonic reduction in bias up to a point where
further increasing λ jeopardises the performance on the main task as the encoder puts more focus on
confusing the stethoscope than on the main task (in our experiments this happens at λ « 101).

This scenario could also be seen from the perspective of feeding additional information into the
network, which could profit from more diverse training data. However, Figure 5b shows that naively
using an auxiliary setup to train the network on local stability worsens the bias. With increasing λ
and increasing performance of the stethoscope, performance slightly improves on easy scenarios
while accuracy deteriorates on hard scenarios. Auxiliary training on local stability further shifts the
focus to local features. When tested on hard scenarios, where local and global stability are inversely
correlated, the network will therefore perform worse when it has learned to rely on local features.
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