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Abstract
Robotics aims to deploy systems in increasingly complex and dynamic environ-
ments. This leads to a growing demand of robust and safe control algorithms for
spatio-temporal domains, as failing potentially results in critical damage to the
robot or its surroundings. Control policies can be learned in a purely data-driven
manner. However, this approach is typically limited to applications where large
datasets can be easily collected. The resulting policies are often challenged when
they have to generalize to new situations. In this work, we propose to use Model
Predictive Control (MPC) that relies on a dynamics model which integrates physi-
cal modeling and learning. We show how the underlying hybrid dynamics model
can make more accurate long-term prediction than purely learned dynamics models
specifically in new situations. Thereby, it ensures robust control. We demonstrate
this in quantitative experiments on the task of planar pushing for which a physics
model and a large real-world dataset is available.

1 Introduction
Deploying robots in unstructured and dynamic environments requires robust control laws even when
facing large uncertainties. Model predictive control (MPC) incorporates continuous re-planning that
addresses this problem. MPC relies on roll-outs of a dynamics model to predict future system states
given a sequence of control inputs. One of the main challenges in designing an MPC architecture is to
find an appropriate dynamics model that allows fast roll-outs into the future and efficient optimization
over a time horizon. Analytical dynamics models are based on the laws of physics and can thus be
expected to generalize well. However, these models often require approximations to become tractable
and assume precise information about system parameters and state which may be hard to obtain. In
contrast, neural networks have the ability to learn even very complex dynamics but are not guaranteed
to generalize well to data outside of their training distribution. Lacking the ability to precisely predict
future system states in unseen scenarios could lead to potentially catastrophic failure of the controller.
We argue that combining analytical and learned models leverages the strength of each approach and
thus enables robust control.
We extend a hybrid one-step prediction model [7] to a sequence-to-sequence model and embed this
into an MPC approach. Our testbed is planar pushing, for which a well-known physics model [10]
and the real-world MIT Push dataset [14] are available. We show how this novel approach increases
generalization of the dynamics model and thereby enables robust control in unseen scenarios. We
also show how it improves data and training efficiency in comparison to purely learned models.
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Figure 1: RNN architecture that performs MPC (i) by predicting the state x N timesteps into the
future and (ii) by optimizing the future control inputs ut:t+N to minimize a given cost function. The
architecture is divided into an encoder and a decoder. Only the encoder has a perception model to
estimate the state xt from an input image while both, the encoder and decoder, have dynamic models
to predict the future state xt+1.

2 Related Work

Combining Analytical and Learned Dynamics Models While Bauza and Rodriguez [3] and Li
et al. [9] developed purely data-driven models for planar pushing, Ajay et al. [1] demonstrated that
combining deterministic simulators with learnable, stochastic neural networks outperforms purely
analytical and purely learned simulators. Moreover, an extensive evaluation of the advantages and
limitations of combining learning and analytical models has been conducted in [7]. In contrast to
previous work [3, 9, 1], we do not assume a fully observable state and estimate dynamic model
parameters over the course of a sequence. We extend the one-step prediction model [7] to a sequence-
to-sequence model that predicts over a longer time horizon.

Model Predictive Control MPC relies on a dynamics model to predict future states of the system
xt+1:t+N+1 for the prediction horizon N given the future control inputs ut:t+N . The control inputs
are optimized so that a cost function J is minimized. Variations of MPC have been successfully
implemented in a large variety of applications [4, 8], such as aggressive driving [12], laser applications
[2] or reactive planar manipulation [5]. Despite the great success, the performance of the controller is
limited by the ability of the model to capture the dynamics of the system [11, 13].

3 Method

We propose a dynamics model that takes the form of a recurrent neural network (RNN). Its encoder
takes a sequence ofN images and control commands ut−N :t as input. Its decoder predicts a sequence
of future system states xt+1:t+N+1. This model is visualized in Figure 1.
Each encoder cell consists of a perception and a dynamics model. The perception model infers the
state xt at timestep t from the input image using a convolutional neural network (CNN). Given
the estimated state xt and the control inputs ut, the dynamics model predicts the future state xt+1

as well as some dynamic model parameters ht+1. Within the encoder, only the dynamic model
parameters h are forwarded to the next cell, as x is estimated from the input images at each timestep.
By forwarding h, parameters can be estimated which are not encoded in a single image. The decoder
cell takes the predictions from the previous timestep as input. This can be rolled out to predict several
steps into the future. In our proposed method, the dynamics model is combining an analytical and a
learned model. This is described in detail in Section 4.
During training, the input images as well as the corresponding control commands for the encoder
cells ut−N :t and the control commands for the decoder cells ut+1:t+N are given. We train the model
parameters Θ to optimize the prediction accuracy. After training, we apply the model for a control
task where the control command to the last encoder cell and to all decoder cells ut:t+N (colored pink
in Figure 1) become variables that can be optimized to achieve some desired states x∗

t+1:t+N+1. To
optimize u, we use a variation of backpropagation through time (BPTT). The decoder thus performs
MPC by first predicting the systems state N timesteps into the future and then optimizing the control
commands ut:t+N by: arg min

ut:t+N

∑t+N+1
i=t+1 Ji = arg min

ut:t+N

∑t+N+1
i=t+1 ||x∗

i − xi||22. We use Adam [6] to

train the model and optimize the control inputs.
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4 Experiments
We compare the proposed hybrid model to an analytical and purely learned model in terms of the
following metrics: prediction accuracy, data and training efficiency as well as generalization to new
scenarios. For this purpose, we designed two experiments. The first experiment evaluates prediction
accuracy over different test sets given either 20k or 50k training samples. The second experiment
assesses the performance of MPC when relying on either of the three dynamics models.

Dataset We used the MIT Push Dataset [14] for our experiments where eleven different objects
(Figure 3) are pushed on four different surface materials. This data is annotated with object and pusher
pose as well as contact points and normals [7]. For the initial experiments presented in this paper, we
used the 20k and 50k subsets of the full dataset for training and testing the dynamics model. They
contain only data points with push velocities up to 50 mm/s and zero pusher acceleration. One data
point in our datasets consists of a sequence of RGB images and the corresponding object positions
before and after the pushes are applied as well as the pusher’s initial positions and movements.
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Figure 2: Three dynamics models. x represents
the system state, u the control command, p the
object pose and s contact dependent parameters.
The number of learned parameters is increasing
from left to right.

Dynamic Model Variants Fig. 2 shows the
three different dynamics models we compare in
our experiments. These models were plugged
into the architecture shown in Fig. 1. Each
model takes as input the current state of the
system xt estimated by the CNN and the con-
trol command ut. It predicts the future state
xt+1. Given the predicted state and the control
command ut+1, the dynamics models can be re-
cursively rolled out to predict several steps into
the future.
In the context of planar pushing, the system
state x consists of the object pose p as well as
contact dependent parameters s (α: angle of
contact normal, co: vector from contact point to
object’s center, δ: angle between co and x-axis). The dynamic model parameters h correspond to
friction parameters.
In Fig. 2, the number of learned parameters is increasing from left to right. The leftmost model is
purely analytical. Since we do not assume any prior knowledge about the object shape, we cannot
model the transition of the contact dependent parameters s over time. Therefore, we keep these
parameters constant during prediction. In contrast, the other prediction models learn the dynamics
of these parameters from data. Apart from the multistep prediction, another distinction to [7] is the
estimation of ht. The friction parameters ht cannot be observed from single images and were thus
assumed to be given in [7]. Here, we extended a long-short term memory (LSTM) architecture to
estimate these dynamic model parameters over the course of a sequence. To increase the comparability
among the models, we also let the purely analytical model estimate h. This was achieved by adding a
small fully connected neural network to the architecture shown in Fig. 1 to infer friction per input
frame without transferring this information over time.

Experiment 1: Efficiency and Generalization We evaluate the data and training efficiency of the
dynamics models and their ability to generalize over different object shapes. For this purpose, we
test each model on shapes which were not included in the training and validation set. As evaluation
metric, we use the mean absolute error between the prediction and the ground truth over the entire
sequence. The object shapes shown in the bottom row of Fig. 3 are the test shapes and all other
shapes in the dataset were used to train the model. In the left column, the test shapes are more similar
to the training shapes than in the right column. It should therefore be harder to generalize for the test
condition than in the right column. Moreover, we trained each model once with 20k and once with
50k examples to investigate training data efficiency. The results in Fig. 3 show that the mean and
standard deviation (std) of the test error for the prediction models which include a physics model are
significantly lower than for the purely learned model. Furthermore, the smaller the number of learned
parameters, the lower is the initial mean and std. With increasing amount of training examples and
epochs the prediction accuracy of the hybrid model is further improving.
These results agree with our hypothesis that hybrid models are able to increase the generalization
ability over object shapes and substantially reduce the amount of training time and data needed to
achieve high prediction accuracy as compared to a purely learned model.
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Figure 3: Mean and standard deviation of the absolute difference between prediction and ground
truth averaged over a push sequence, plotted over training epochs. The test shapes (red and blue)
were not in the training and validation set (gray shapes). This visualizes the generalization ability of
the different dynamic models to unseen object shapes as well as their data and training efficiency.

Experiment 2: Performance of the MPC We evaluate the performance of our MPC approach
when using different dynamics models. We used the models trained for 20 epochs with 20k training
examples. The metric to quantify the control performance is the mean and std of the translational
and rotational error between the desired and actual pose of the object during different phases of the
push (beginning, middle and end). Since we had no access to the robot that was used to collect the
dataset, we used pushes in the dataset to emulate real robot actions: Given an optimized control
input ut from the MPC, we search the dataset for the most similar case and applied it. This ensures
that we know the actual effect of the applied push and do not have to resort to simulation. It also
introduces some discrepancy between the desired and executed action which is expected behaviour
when executing pushes on the real world. We again tested the MPC only on shapes which have not
been in the training set to evaluate its generalization ability to novel situations.

Table 1: Quantitative analysis of the control performance showing the mean
and stdt of translational (∆x in mm) and rotational error (∆φ in deg). The push
sequence was divided into beginning (I), middle (II) and end phase (III).

Model ∆xI (σx) ∆φI (σφ) ∆xII (σx) ∆φII (σφ) ∆xIII (σx) ∆φIII (σφ)

Analytical 1.04(0.91) 0.71(0.56) 3.31(3.10) 2.71(3.06) 5.66(4.84) 4.74(4.44)
Hybrid 1.66(1.65) 1.14(0.89) 2.57(2.59) 1.88(1.57) 3.33(3.01) 2.65(2.75)
Learned 2.96(2.61) 2.53(1.98) 6.15(3.99) 5.51(4.33) 8.97(6.01) 8.02(6.38)

From the results
shown in Table
1 we can see
that the hybrid
MPC approach is
in particular ad-
vantageous in the
later parts of the
push sequence. While the MPC architecture using the analytical model has the lowest error in the
beginning of the push sequence, the error accumulates considerably faster than the one of the hybrid
approach. Moreover, we see that the purely learned model does not perform as well as the other
models. We have generated several videos to show qualitative results of the MPC performance. They
can be found here.

5 Conclusion
The main contribution of this work is to demonstrate that combining analytical and learned models
within an MPC architecture improves the robustness of the controller in the face of uncertainties.
For our testbed of planar pushing, we showed that a hybrid dynamics model outperforms a purely
learned model in both, long-term predictions and control. In addition, the hybrid approach reduces
the dependency on large training sets, as it is significantly more data efficient than a purely learned
model. We also showed that it leads to a lower accumulated error than a purely analytical model over
a control sequence.
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