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1 Introduction and Related Work

Learning physical functions is an area of strongly growing interest, with applications ranging from
physical models for analyzing motions in videos [3, 9], over control of robots [6], to fast approxi-
mations for numerical solvers [4, 8]. However, while humans often effortlessly predict the outcome
of complex interactions of real world objects, similar effects are currently still extremely difficult
to decode for machine learning approaches. The overarching goal of our work is to employ physi-
cal simulations as priors to regularize learning problems, i.e., to give learning processes a physical
intuition and understanding. At the same time, these learned models have the potential to improve
computational performance and accuracy of physical simulations.

Despite first steps in this direction, the often highly non-linear behavior of the underlying physical
models in conjunction with large numbers of degrees of freedom pose significant challenges. In the
following we will give an overview of several recent works from the area of deep learning for fluid
flow, and discuss open problems as well as future directions of research.

Water and air, i.e. fluids in general, are ubiquitous in our world. At the same time, they represent a
wide class of challenging physics problems, as the constantly changing motions and boundary con-
ditions result in a complex space of motions and configurations. Although proofs for the existence
of smooth solutions are still outstanding, the Navier-Stokes equations are an established physical
model to describe such fluids. They typically take the form

∂u/∂t+ u · ∇u = −1/ρ∇p+ ν∇2u+ g , ∇ · u = 0, (1)

where the fluid velocity u, and p pressure and the unknown quantities. The parameters g, ρ and ν
denote external forces, density and viscosity, respectively. The two equations combine advection
and diffusion terms with hard constraints, and as such are very good representatives for large classes
of physical PDEs.

The research works described in the following illustrate several core aspects of physics-based learn-
ing. More specifically:

• We will demonstrate inductive bias in the form of discretized numerical simulations for
transport processes, and their importance for flow super-resolution problems.

• Within the same setting we also demonstrate how to learn realistic temporal coherence with
adversarial training.

• A second project will illustrate the construction of physical latent spaces for temporal pre-
dictions. The resulting dimensionality reduction enables the inference of high-dimensional
functions over time.

• Here we will also illustrate how hard constraints, such as conservation laws, can be inco-
porated into the learning process.

2 Transport and Temporal Coherence

We recently proposed a temporally coherent generative model addressing the super-resolution prob-
lem for fluid flows [11]. Our work represents a first approach to synthesize four-dimensional physics
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fields with neural networks. The approach is based on a conditional generative adversarial network
that is designed for the inference of three-dimensional volumetric data. It receives a coarsely re-
solved flow solution, which typically represents a passively advected quantity such as smoke, as
input, and has the goal to generate a solution with a higher resolution, with a factor of 4x for our
tests. In this setting the strong motions and resulting deformations cause significant difficulties for
convolutional neural networks. We demonstrate that incorporating the discretized transport operator
into the network leads to significantly improved results. While this transport is non-linear in gen-
eral, it can be represented as a regular matrix for a known motion and time step, and in this form
represents a powerful component in neural network architectures. In the following, we will denote
the discretized version of this advection operator with A.

A second, crucial component of our approach is a specialized discriminator network that focuses
on temporal coherence. This network is included in addition to a regular conditional discriminator
which focuses on spatial detail. Given a generator G, a simple direct L2 based temporal loss for
three consecutive frames at times t− 1,t, and t+ 1 would take the form

L2 = ‖G(xt)−A(G(xt−1), vt−1)‖22 + ‖G(xt)−A(G(xt+1),−vt+1
x )‖22 . (2)

Here xt and vt denote low-resolution density and velocity at time t. Despite aligned density config-
urations thanks to the advection withA, we show that this loss function is clearly outperformed by a
learned loss function in the form of a specialized discriminator network. This temporal discriminator
network Dt is trained to minimize

LDt
(Dt, G) = Em[− logDt(ỸA)] + En[− log(1−Dt(G̃A(X̃)))] . (3)

On a high level, this discriminator is trained with a cross entropy loss to distinguish the classes for
ground truth Y and generated samples X . In addition, the tilde denotes a set of three consecutive
frames, i.e., X̃ = {xt−1, xt, xt+1} that are likewise aligned by advection, similar to Eq. 2. In
this way, the discriminator has the capcity to discriminate based on the temporal evolution of the
generated samples in comparison to the ground truth. A temporal discriminator trained in this way
successfully removes the strong temporal changes that a regular super-resolution network would
produce.

In addition, our experiments show that the generator network is able to infer more realistic high-
resolution details by using additional physical quantities, such as low-resolution velocities or vortic-
ities. In this way, our network learns to generate advected quantities with highly detailed, realistic,
and temporally coherent features. Our method works instantaneously, using only a single time-step
of low-resolution fluid data, consisting of a density configuration and a flow field. To the best of
our knowledge, our work was the first to demonstrate the usefulness of adversarial training in the
context of space-time functions for fluid flow.

Figure 1: Two examples of high resolution flows generated by our network: on the left, a flow
around an obstacle, with the coarse input on the left, and the high resolution output on the right. The
output in this case has almost 200 million degrees of freedom. On the right a jet flow example with
an output resolution of 5123 is shown. In this case, the low-resolution input is shown in the top-left
inset image.

3 Physical Latent-Spaces and Hard Constraints

We additionally propose a method for learning representations of physical function spaces, i.e. latent
spaces of deep neural networks, and for the data-driven inference of temporal evolutions in these
latent spaces [10, 2]. The central challenge in this context is the high dimensionality of Eulerian
space-time data sets, which arise in many settings of physical problems.
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We address this challenge by training an autoencoder to learn an encoding scheme that can adapt
to the targeted space of solutions. We have found that deep-learning based encoders significantly
outperforms generic methods for the compression of scientific data sets such as FPZIP [5]. For data
sets of buoyant smoke plumes, we have achieved compressions ratios of 172× in two-, and 356× in
three dimensions, while keeping the compression errors below those of FPZIP [2].

Despite the excellent performance in terms of dimensionality reduction, deep learning approaches
typically do not support hard constraints. While additional terms can be added to the objective
function of an optimization or learning process, there are typically no guarantee to what extent such
a constraint will be minimized, and in the worst case the optimizer converges to a sub-optimal trade
off between the constraints and other regularization terms or minimization targets.

However, in the context of physics simulations, it is possible to re-formulate a problem such that
constraints are reflected in the space of solutions. For fluid flow, divergence-freeness of the fluid
motion, i.e., conservation of mass, is a constraint of fundamental importance, see Equation 1. Here,
instead of representing the flow motion u as a regular vector field, i.e. u ∈ R3, we can re-phrase
the physical model in terms of a so-called stream function, ψ ∈ R3, with u = ∇ × ψ. Thus, the
velocity is given by the curl of the stream function, and by construction, ∇ · (∇ × ψ) = 0, thus
velocities represented in this fashion are guaranteed to be divergence free up to numerical precision
of the curl operator.

Correspondigly, instead of using a loss function directly minimizing velocity for the autoencoder
Lu = |u− a|, with a denoting the output of the autoencoder, we employ a loss function of the form
Lsf = |u−∇× a|. In this way the autoencoder learns to generate a stream function, which we can
efficiently convert to a divergence free flow field by computing its curl. Examples of learned spaces
of flow behavior can be found in Kim et al. [2]. While the learned models exhibit excellent mass
conservation properties, it is worth mentioning that boundary conditions can be more difficult for
stream function representations, hence we have focused on single-phase smoke flows with stream
functions so far.

4 Temporal Prediction

For the temporal prediction we employ an hybrid LSTM-based approach to predict the changes
of the pressure fields over time [10]. We propose an LSTM architecture that is combined with
convolutuions in order to reduce the number of required weights.

In this way we demonstrate that dense 3D+time functions of physics system can be predicted within
the latent spaces of neural networks, and we arrive at a neural-network based simulation algorithm
with significant practical speed-ups. We highlight the capabilities of our method with a series of
complex liquid simulations, and with a set of single-phase buoyancy simulations, examples of which
are shown in Figure 3. With a trained network, our method very significantly outperforms a regular
pressure solver: The pressure inference by the LSTM network for a 1283 volume with more than
2 million entries takes 9.5ms, on average. Including the times to encode and decode the field,
which we measured at 4.1ms and 3.3ms, respectively, this represents a 155× speedup compared to
a parallelized state-of-the-art iterative pressure solver [1], running with eight threads.
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Figure 2: Validation (l) and test accuracy (r).

We also studied the accuracy of the predicted so-
lutions [10, 7]. Two examples of steady-state flow
predictions for varying network sizes and train-
ing data amounts can be found in Figure 2, which
yield relative errors of less than 3% for previ-
ously unseen configurations. Detailed evaluations
of the trained LSTM models discussed above are
given in [10]. There we measure errors with re-
spect to the inferred quantities, e.g. pressure, and
for the resulting liquid surface position. In gen-
eral, our LSTM introduces a certain amount of drift per prediction step, which however, is signif-
icantly reduced by employing a traditional solving step in intervals. Interestingly, the LSTM can
look ahead in time, i.e., predict multiple future steps at once, with only a negligible loss in accuracy
and increase in runtime.
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In the future, networks such as the one we have discussed for predictions of pressure functions
could provide pre-trained building blocks for other networks. These pre-trained networks are dif-
ferentiable, and in contrast to black-box numerical solvers allow for back-propagation without the
need to manually specifiy gradients. Thus, they could provide capabilities to predict how a physical
system will change and react, i.e., they can yield a physical intuition for deep learning methods.

Figure 3: Examples of temporal predictions for a liquid simulation (left), and a buoyant smoke
simulation (right).

5 Conclusions

We have discussed two approaches for deep learning in the context of physically-based flow simu-
lations. Despite outperforming traditional techniques, we believe that these methods are only first
steps towards a tighter integration of physical models and deep learning. A seamless integration of
both fields has the potential for huge impact on both sides: on the one hand it could provide learning
methods with a reliable way to predict physical behavior, and as such help us to analyze and improve
our models of cognition and learning algorithms. On the other hand, deep learning techniques also
have the potential to uncover previously unknown patterns in physical data sets, and in this way help
humans to better understand nature.
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