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Abstract

Planning for robotic manipulation requires reasoning about the changes a robot
can affect on objects. When such interactions can be modelled analytically, as in
domains with rigid objects, efficient planning algorithms exist. However, in both
domestic and industrial domains, the objects of interest can be soft, or deformable,
and hard to model analytically. For such cases, we posit that a data-driven modelling
approach is more suitable. Building on the recent Causal InfoGAN generative
model, in this work we learn to imagine goal-directed object manipulation directly
from raw image data of self-supervised interaction of the robot with the object.
After learning, given a goal observation of the system, our model can generate an
imagined plan – a sequence of images that transition the object into the desired goal.
To execute the plan, we use it as a reference trajectory to track with a visual servoing
controller, which we also learn from the data as an inverse dynamics model. In
a simulated manipulation task, we show that separating the problem into visual
planning and visual tracking control is more sample efficient and more interpretable
than alternative data-driven approaches. We further demonstrate preliminary results
on learning to imagine and execute deformable rope manipulation. A video of our
work can be found at tinyurl.com/visualplanningacting

1 INTRODUCTION

The main difficulty in planning the manipulation of deformable objects is that, in contrast with rigid
objects, there is no obvious mapping from an observation of the object to a compact representation
in which planning can be performed. Thus, traditional task and motion planning approaches, which
require manual design of the predicates, preconditions, and effects in the problem, are difficult to
apply (McConachie et al. [2017], Srivastava et al. [2014]). In recent years, several studies have
proposed a data-driven, self-supervised paradigm for robotic manipulation (Agrawal et al. [2016],
Nair et al. [2017], Finn and Levine [2017]). In this approach, the robot ‘plays’ with the object
using some random manipulation policy (e.g., randomly grasping or poking an object), and collects
perceptual data about the interactions with the object. Later, machine learning is used to train a
policy that performs the task directly from the perceptual inputs. By relying directly on data, these
approaches overcome the modelling challenges of classical planning approaches, and scale to handle
high-dimensional perceptual inputs such as raw images.

In this work we ask – can we learn to automatically generate the visual plan and follow it in a data-
driven way? Concretely, given the current image of the system and some desired goal observation, we
would like to generate a sequence of images that manipulate the object to the desired configuration,
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Figure 1: The PR2 robot first collects data through self-supervised random rope manipulation. Then,
given a goal observation for the rope, we plan a visual trajectory of a possible manipulation sequence
that reaches the goal (shown on top). Finally, visual servoing is used to execute the imagined plan.

without any human guidance, and then use this plan in conjunction with an inverse model for actually
manipulating the object.

However, learning visual planning directly from raw image data has so far been limited to very simple
planning tasks, such as reaching or pushing rigid objects Finn and Levine [2017], Ebert et al. [2017].
In this work, we take a step towards learning complex visual planning for robotic manipulation, by
learning features that are compatible with a strong planning algorithm. At the basis of our approach
is the recent NIPS 2018 work, the Causal InfoGAN (CIGAN) model from Kurutach et al. [2018].
In CIGAN, a deep generative model is trained to predict the possible next states of the object, with
a constraint that linear trajectories in the latent state of the model produce feasible observation
sequences. Kurutach et al. [2018] used a CIGAN model for planning goal-directed trajectories simply
by linearly interpolating in the latent space, and then mapping the latent trajectory to observations for
generating the visual plan.

Building on CIGAN, we propose a method for visual planning and acting, where sensory data
obtained from self-supervised interaction is used to learn both a CIGAN model for visual planning
and an inverse model for tracking a visual plan. After learning, given a goal observation for the
system, we first use CIGAN to imagine a sequence of images that transition the system from its
current configuration towards the goal. Then, we use the imagined trajectory as a reference for
tracking using the inverse model.

We show that separating the control task into visual planning and visual tracking leads to an inter-
pretable decision making paradigm, which is also more sample efficient than data-driven methods
which learn actions directly from images. In addition, our contributions include (1) a context-
conditional CIGAN model, (2) improved CIGAN planning using A∗ in latent state space, and most
importantly, (3) showing that this approach is powerful enough to leave simulation and work on a
PR2 rope manipulation domain.

2 Visual Planning and Acting

Our approach is model-based, where we first use the data D to learn both a CIGAN model MCIGAN
and an inverse dynamics model MIM. For any two start and goal observations ostart, ogoal, the
CIGAN model MCIGAN can generate a visual plan that transitions the system from start to goal,
ostart, o1, . . . , ok, ogoal. Since the CIGAN model is trained to generate feasible pairs of observations,
we are guaranteed that the plan generated by a well-trained CIGAN model will be feasible, in the
sense that the robot can actually execute it.

Our Visual Planning and Acting (VPA) method for solving the goal directed planning problem is a
combination of planning and replanning using the CIGAN model MCIGAN, and trajectory tracking
using the inverse model MIM. The VPA algorithm is given as follows:

1. Plan: given a pair, ostart, ogoal, use the the CIGAN model MCIGAN to generate a planned
sequence of observations ostart, o1, ..., om, ogoal.

2. Act: If the length of the plan m is zero, take an action u to reach the goal u =
MIM(ostart, ogoal), then stop. Else:
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3. Take an action u to reach the first observation in the plan u = MIM(ostart, o1) and take a
new observation of the current system state onew.

4. Replan: update ostart to be the current observation onew, and go back to step 1.

The only data required is images taken from self-supervised manipulation of an object. Nevertheless,
our method enjoys the interpretability of model based methods – at every step of our algorithm we
have a visual plan of the proposed manipulation. We found that this allows us to reliably evaluate the
performance of VPA before performing any robot experiment, significantly reducing robot-time and
effort.

3 EXPERIMENTS

We demonstrate our method on two different domains. The first is a blocks world simulation in
Mujoco from Todorov et al. [2012]. In this domain, we perform a comparison with batch off-policy
RL – an alternative method for learning a control policy from data. The second domain is a real world
rope manipulation problem with a PR2 robot that also includes several configurable obstacles.

3.1 Simulated Block Domain

Quantitatively, we evaluated VPA on 50 random initial and goal configurations that were not in the
data, as shown in Table 1.

We compare VPA with an alternative data-driven approach based on model-free batch RL, namely,
fitted Q-iteration Riedmiller [2005]. This is a strong baseline, that makes use of both the action-
labeled and unlabled data, and incorporates several recent techniques for image-based RL. However,
as stated earlier, RL is known to have difficulties with large state spaces (image), reward specification,
and sample efficiency. To demonstrate this, we also run RL with several artificial benefits: (1) simple
state space – true positions of the blocks, (2) true reward – based on real distance to target, and (3)
more data – 30k action-labeled samples. Our results, reported in Table 1 show that, surprisingly, VPA
significantly outperforms RL even with the artificial benefits.

Figure 2: Top: imagined plan by Causal InfoGAN. Start and Goal image are both oclosest to the
actual ostart and ogoal, which are shown right below them. Bottom: actual successful results of
running entire VPA pipeline on Mujoco

Table 1: The average final L2 distance to goal and the success rate to move two blocks to be within
0.5 radius to the goal when executed on 50 new tasks.

Method L2 distance Success Rate
VPA (2k) 0.335 ±0.121 90%

Batch RL (positions, real r, 2k) 0.657 ±0.701 76%
Batch RL (positions, real r, 30k) 0.675 ±0.739 74%

Batch RL (image, real r, 2k) 1.172 ±0.991 16%
Batch RL (image, real r, 30k) 1.186 ±0.940 42%

Batch RL (image, embedded r, 2k) 1.346 ±0.891 14%
Batch RL (image, embedded r, 30k) 1.445 ±1.096 18%

3.2 Real Robot Rope Manipulation Domain

We conduct experiments with a PR2 robot manipulating a flexible rope that is fixed on one end,
and can move between two obstacles. This domain is inspired by wire threading – an important
industrial task that is extremely challenging for autonomous robots. For data collection, we followed
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the approach in Nair et al. [2017], for generating random pokes of the rope, and collected 2k samples
for observations and actions and an additional 10k for just observations.

In terms of success rate, we qualitatively inspected the plans and found that approximately 15% were
visually accurate representations of rope manipulation. The most common failure cases are inaccurate
encoding, leading to a misspecified goal image, or the rope breaking during the trajectory. We believe
that more data and further improvements to C3IGAN would significantly improve these results. From
the visually correct plans, the inverse model was able to successfully execute 20%. This is somewhat
worse than the results of Nair et al. [2017], which we attribute to the order of magnitude smaller
data set we used, and our additional obstacles. We emphasize that even though our success rates
are not high, our method is interpretable, and most failure cases can be caught by visual inspection,
without running the robot. We see these results as a proof of concept for a new paradigm for robot
manipulation.

Figure 3: 5 examples of VPA on the rope domain. The top 4 are successful runs, and the bottom 1 is
where a plan is generated to reach the goal, but the action policy is not strong enough to carry it out.
Looking at one row at a time, the left image is the start state and the right is the goal state. In the
middle, the grayscale images are the visualized plan, and the colored images are the actual results of
the rope when we run the inverse model to have the PR2 take actions.
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