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Abstract

Object-based approaches for learning action-conditioned dynamics has demonstrat-
ed promise for generalization and interpretability. However, existing approaches
suffer from structural limitations and optimization difficulties for common en-
vironments with multiple dynamic objects. In this paper, we present a novel
self-supervised learning framework, called Multi-level Abstraction Object-oriented
Predictor (MAOP), for learning object-based dynamics models from raw visual ob-
servations. MAOP employs a three-level learning architecture that enables efficient
dynamics learning for complex environments with a dynamic background. We also
design a spatial-temporal relational reasoning mechanism to support instance-level
dynamics learning and handle partial observability. Empirical results show that
MAOP significantly outperforms previous methods in terms of sample efficiency
and generalization over novel environments that have multiple controllable and
uncontrollable dynamic objects and different static object layouts. In addition,
MAOP learns semantically and visually interpretable disentangled representations.

1 Introduction

Model-based deep reinforcement learning (DRL) has recently attracted much attention for improving
sample efficiency of DRL, such as [1, 2]. One of the core problems for model-based reinforcement
learning is to learn action-conditioned dynamics models through interacting with environments.
Pixel-based approaches have been proposed for such dynamics learning from raw visual perception,
achieving remarkable performance in training environments [3].

To unlock sample efficiency of model-based DRL, learning action-conditioned dynamics models
that generalize over unseen environments is critical yet challenging. Finn et al. [4] proposed an
action-conditioned video prediction method that explicitly models pixel motion and thus is partially
invariant to object appearances. Zhu et al. [5] developed an object-oriented dynamics predictor,
taking a further step towards generalization over unseen environments with different object layouts.
However, due to structural limitations and optimization difficulties, these methods do not learn and
generalize well for common environments with a dynamic background, which contain multiple
moving objects in addition to controllable objects.

To address these limitations, this paper presents a novel self-supervised, object-oriented dynam-
ics learning framework, called Multi-level Abstraction Object-oriented Predictor (MAOP). This
framework simultaneously learns disentangled object representations and predicts object motions
conditioned on their historical states, their interactions to other objects, and an agent’s actions. To
reduce the complexity of such concurrent learning and improve sample efficiency, MAOP employs a
three-level learning architecture from the most abstract level of motion detection, to dynamic instance
segmentation, and to dynamics learning and prediction. A more abstract learning level solves an
easier problem and has lower learning complexity, and its output provides a coarse-grained guidance
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for the less abstract learning level, improving its speed and quality of learning convergence. This
multi-level architecture is inspired by humans’ multi-level motion perception from cognitive science
studies [6, 7] and multi-level abstraction search in constraint optimization [8]. In addition, we design
a novel CNN-based spatial-temporal relational reasoning mechanism, which includes a Relation
Net to reason about spatial relations between objects and an Inertia Net to learn temporal effects.
This mechanism offers a disentangled way to handle physical reasoning in the setting with partial
observability.

Empirical results show that MAOP significantly outperforms previous methods in terms of sample effi-
ciency and generalization over novel environments that have multiple controllable and uncontrollable
dynamic objects and different object layouts. It can learn from few examples and accurately predict
the dynamics of objects as well as raw visual observations in previously unseen environments. In
addition, MAOP learns disentangled representations and gains semantically and visually interpretable
knowledge, including meaningful object masks, accurate object motions, disentangled reasoning
process, and the discovery of the controllable agent.

2 Multi-level Abstraction Object-oriented Predictor (MAOP)

In this section, we will present a novel self-supervised deep learning framework, aiming to learn
object-oriented dynamics models that are able to generalize over unseen environments with different
object layouts and multiple dynamic objects. Such an object-oriented dynamics learning approach
requires simultaneously learning object representations and motions conditioned on their historical
states, their interactions to other objects, and an agent’s actions. This concurrent learning is very
challenging for an end-to-end approach in complex environments with a dynamic background.
Evidences from cognitive science studies [6, 7] show that human beings are born with prior motion
perception ability (in Cortical area MT) of perceiving moving and motionlessness, which enables
learning more complex knowledge, such as object-level dynamics prediction. Inspired by these
studies, we design a multi-level learning framework, called Multi-level Abstraction Object-oriented
Predictor (MAOP), which incorporates motion perception levels to assist in dynamics learning.
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Figure 1: Multi-level abstraction framework from a top-down decomposition view. First, we perform
motion detection to produce foreground masks. Then, we utilize the foreground masks as dynamic
region proposals to guide the learning of dynamic instance segmentation. Finally, we use the learned
dynamic instance segmentation networks (including Instance Splitter and Merging Net) as a guiding
network to generate region proposals of dynamic instances and guide the learning of Object Detector
in the level of dynamics learning.
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Figure 1 illustrates three levels of MAOP framework: dynamics learning, dynamic instance segmen-
tation, and motion detection. The dynamics learning level is an end-to-end, self-supervised neural
network, aiming to learn object representations and instance-level dynamics, and predict the next
visual observation conditioned on an agent’s action. To guide the learning of the object representations
and instance localization at the level of dynamics learning, the more abstracted level of dynamic
instance segmentation learns a guiding network in a self-supervised manner, which can provide
coarse dynamic instance mask proposals. It exploits the spatial-temporal information of locomotion
property and appearance pattern to capture the region proposals of dynamic instances. To facilitate
the learning of dynamic instance segmentation, MAOP employs the more coarse-grained level of
motion detection, which detects changes in image sequences and provides guidance on proposing
regions potentially containing dynamic instance. As the learning proceeds, the knowledge distilled
from the more coarse-grained level are gradually refined at the more fine-grained level by considering
additional information. When the training is finished, the coarse-grained levels of dynamic instance
segmentation and motion detection will be removed at the testing stage. The details of the design of
each level and their connections can be found in Appendix A.

3 Experiments

We compare MAOP with state-of-the-art action-conditioned dynamics learning baselines, AC Model
[3], CDNA [4], and OODP [5] on two games, Monster Kong and Flappy Bird, from the Pygame
Learning Environment, which allows us to test generalization ability over various scenes with different
layouts. To test whether our model can truly learn the underlying physical mechanism behind the
visual observations and perform relational reasoning, we set the k-to-m zero-shot generalization
experiment, where we use k environments for training and other m unseen environments for testing.

As shown in Table 1, MAOP significantly outperforms other methods in all experiment settings in
terms of generalization ability and sample efficiency of both object dynamics learning and image
prediction. We also test our model on Flappy Bird, where we limit the training samples to 100 and
300 to form a sufficiently challenging generalization task. As shown in Table C2 (Appendix C), our
performance is similar with that on Monster Kong. In Figure C4 (Appendix C), we plot the learning
curve for better visualization of the comparison.

Models
Training environments Unseen environments

1-5† 1-5 2-5 3-5 1-5† 1-5 2-5 3-5

Agent All Agent All Agent All Agent All Agent All Agent All Agent All Agent All

MAOP 0.67 0.80 0.88 0.87 0.86 0.87 0.80 0.83 0.60 0.77 0.81 0.84 0.85 0.87 0.80 0.85
0-error OODP 0.24 0.17 0.18 0.16 0.22 0.17 0.26 0.20 0.20 0.16 0.20 0.15 0.18 0.15 0.26 0.18

accuracy AC Model 0.04 0.59 0.87 0.94 0.80 0.93 0.77 0.92 0.01 0.18 0.08 0.16 0.30 0.48 0.45 0.66
CDNA 0.30 0.66 0.41 0.76 0.42 0.78 0.44 0.74 0.31 0.55 0.37 0.59 0.40 0.71 0.41 0.70

MAOP 0.90 0.91 0.97 0.94 0.97 0.93 0.96 0.93 0.86 0.90 0.96 0.93 0.97 0.93 0.95 0.93
1-error OODP 0.49 0.29 0.32 0.23 0.34 0.23 0.35 0.25 0.39 0.25 0.34 0.22 0.32 0.21 0.34 0.22

accuracy AC Model 0.07 0.63 0.98 0.99 0.95 0.98 0.94 0.98 0.02 0.34 0.15 0.26 0.52 0.67 0.66 0.77
CDNA 0.42 0.84 0.48 0.86 0.48 0.86 0.51 0.87 0.45 0.82 0.45 0.83 0.47 0.84 0.48 0.86

MAOP 0.95 0.94 0.99 0.96 0.99 0.95 0.98 0.94 0.95 0.94 0.98 0.95 0.99 0.95 0.98 0.95
2-error OODP 0.67 0.47 0.44 0.37 0.46 0.32 0.49 0.39 0.60 0.43 0.48 0.34 0.43 0.31 0.46 0.36

accuracy AC Model 0.10 0.64 0.99 0.99 0.98 0.99 0.97 0.98 0.04 0.34 0.20 0.31 0.64 0.73 0.77 0.81
CDNA 0.50 0.86 0.52 0.87 0.53 0.88 0.54 0.88 0.53 0.85 0.47 0.84 0.50 0.86 0.51 0.87

MAOP 31.99 26.65 31.68 30.33 34.14 29.78 31.32 30.80
Object OODP 65.51 66.44 66.66 64.73 67.39 67.41 67.78 64.95
RMSE AC Model 62.02 18.88 22.39 21.30 85.46 57.41 55.45 43.48

CDNA 53.89 34.99 35.26 35.94 56.31 45.34 37.59 37.80

MAOP 6.90 5.64 6.68 6.46 7.90 8.60 8.73 6.55
Image OODP 14.70 15.08 14.89 14.42 15.42 24.68 26.39 14.52
RMSE AC Model 15.99 4.12 4.78 4.69 44.92 39.46 38.07 38.12

CDNA 11.47 7.41 7.58 7.68 12.23 9.87 8.10 8.16

Table 1: Prediction performance on Monster Kong. k-m means the k-to-m generalization problem. †
indicates training with only 1000 samples. ALL represents all dynamic objects.

MAOP takes a step towards interpretable deep learning and disentangled representation learning. We
visualize the learned object masks in unseen environments to demonstrate the visual interpretability
of MAOP. We highlight the attentions of the object masks by multiplying raw images by the binarized
masks. As shown in Figure 2, MAOP captures all the key objects in the environments including the
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controllable agents, the uncontrollable dynamic objects, and the static objects that have effects on the
motions of dynamic objects. To further show the dynamical interpretability behind image prediction,
we test our predicted motions by comparing RMSEs between the predicted and ground-truth motions
in unseen environments (Table C3). Intriguingly, most predicted motions are quite accurate, with the
RMSEs less than 1 pixel. Such a visually indistinguishable error also verifies our dynamics learning.
With the learned knowledge in MAOP, we can easily uncover the action-controlled agent from all
the dynamic objects because compared to other objects the action-controlled agent has the maximal
variance of total effects over actions. In addition, with the learned knowledge in MAOP, we can easily
uncover the action-controlled agent from all the dynamic objects because the action-controlled agent
has the maximal variance of total effects over actions compared to other uncontrollable dynamic
objects, as shown in Figure C5.

Monster Kong Flappy Bird

Figure 2: Visualization of the masked images in unseen environments. Left is the raw image.

4 Conclusions and Future Work

We present a self-supervised multi-level learning framework for learning action-conditioned object-
based dynamics. This framework is example-efficient and generalizes object dynamics and prediction
of raw visual observations to complex unseen environments with multiple dynamic objects. The
learned dynamics model potentially enables an agent to directly plan or efficiently learn for unseen
environments. Although a random policy or an expert’s policy is used for exploration in our experi-
ments, our framework can support smarter exploration strategies, e.g., curiosity-driven exploration.
Our future work includes extending our model for deformation prediction (e.g., object appearing,
disappearing and non-rigid deformation) and incorporating a camera motion prediction network
module for applications such as FPS games and autonomous driving.
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Appendix A Details of Multi-level Abstraction Framework

In this section, we will describe in detail the design of each level of our multi-level abstraction
framework and their connections.

A.1 Object-Oriented Dynamics Learning Level

The semantics of this level is formulated as learning an object-based dynamics model with the region
proposals generated from the more abstracted level of dynamic instance segmentation. The whole
architecture is shown in the top part of Figure 1, which is an end-to-end neural network and can be
trained in a self-supervised manner. It takes a sequence of video frames and an agent’s actions as input,
learns the disentangled representations (including objects, relations and effects) and the dynamics
of controllable and uncontrollable dynamic object instances conditioned on the actions and object
relations, and produce the predictions of raw visual observations. The whole architecture includes
four major components: A) an Object Detector that decomposes the input image into objects; B) an
Instance Localization module responsible for localizing dynamic instances; C) a Dynamics Net for
learning the motion of each dynamic instance conditioned on the effects from actions and object-level
spatial-temporal relations; and D) a Background Extractor that computes the background image
from the learned static object masks. Algorithm 1 illustrates the interactions of these components
and the learning paradigm of object based dynamics, which is a general framework and agnostic to
the concrete form of each component. In the following paragraphs, we will describe the detailed
implementation of every components.

Algorithm 1 Basic paradigm of object-oriented dynamics learning.

Input: A sequence of video frames It−h:t with length h, input action at at time t.
1: Object masks Ot−h:t ← ObjectDetector(It−h:t), O include dynamic and static masks D,S
2: Instance masks Xt−h:t ← InstanceLocalization(It−h:t,Dt−h:t)

3: Predicted instance masks X̂
t+1
← ∅

4: for each instance mask x in X do
5: Effects from spatial relations mt

1 ← RelationNet(xt,Ot,at)
6: Effects from temporal relations mt

2 ← InertiaNet(xt−h:t,at)
7: Total effects mt ←mt

1 + mt
2

8: Predicted instance mask x̂t+1 ← Transformation(xt,mt)

9: X̂
t+1
← X̂

t+1⋃
x̂t+1

10: end for
11: Background image Bt+1 ← BackgroundExtractor(It,St)

12: Predicted next frame Î
t+1
← Merge(X̂

t+1
,Bt+1)

Object Detector and Instance Localization Module. Object Detector is a CNN module aiming
to learn object masks from input image. An object mask describes the spatial distribution of a
class of objects, which forms the fundamental building block of our object-oriented framework.
Considering that instances of the same class are likely to have different motions, we append an
Instance Localization Module to Object Detector to localize each dynamic instance to support
instance-level dynamics learning. The class-specific object masks in conjunction with instance
localization build the bridge to connect visual perception (Object Detector) with dynamics learning
(Dynamics Net), which allows learning objects based on both appearances and dynamics.

Specifically, Object Detector receives image It ∈ RH×W×3 at timestep t and then outputs object
masks Ot ∈ [0, 1]H×W×nO , including dynamic object masks Dt ∈ [0, 1]H×W×nD and static object
masks St ∈ [0, 1]H×W×nS , where H and W denote the height and width of the input image, nD and
nS denotes the maximum class number of dynamic and static objects respectively, and nO = nD+nS .
The entry Ou,v,i indicates the probability that the pixel Iu,v,: belongs to the i-th object class. Then,
Instance Localization Module uses the dynamic object masks to compute each single instance mask
Xt
:,:,i ∈ [0, 1]HM×WM (1 ≤ i ≤ nM ), where HM and WM denote the height and width of the

bounding box of this instance and nM denotes the maximum number of localized instances. As
shown in Figure 1, Instance Localization Module first samples a number of bounding boxes on the
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dynamic object masks and then select the regions, each of which contains only one dynamic instance.
As we focus on the motion of rigid objects, the affine transformation is approximatively consistent
for all pixels of each dynamic instance mask. Inspired by this, we define a discrepancy loss Linstance
for a sampled region that measures the motion consistence of its pixels and use it as a selection score
for selecting instance masks. To compute this loss, we first compute an average rigid transformation
of a sampled region between two time steps based on the instance masks and masked image in this
region, then apply this transformation to this region at the previous time step, and finally compared
this predicted region with the region at the current time. Obviously, when a sampled region contains
exactly one dynamic instance, this loss will be extremely small, and even zero when the object masks
are perfectly learned. More details of the region proposal sampling and instance mask selection can
be found in Appendix B.

Dynamics Net. Dynamics Net is designed to learn instance-based motion effects of actions, object-
to-object spatial relations (Relation Net) and temporal relations of spatial states (Inertia Net), and
then reason about the motion of each dynamic instance based on these effects. Its architecture is
illustrated in Figure A3, which has an Effect Net for each class of objects. An Effect Net consists of
one Inertia Net and several Relation Nets. As shown in the left subfigure, instance-level dynamics
learning is performed, which means the motion of each dynamic instance is individually computed.
We take as an example the computation of the motion of the i-th instance Xt

:,:,i to show the detailed
structure of the Effect Net.
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Figure A3: Architecture of Dynamics Net (left) and its component of Effect Net (right). Different
classes are distinguished by different letters (e.g., A, B, ... , F).

As shown in the right subfigure of Figure A3, we first use a sub-differentiable tailor module introduced
by Zhu et al. [5] to enable the inference of dynamics focusing on the relations with neighbour objects.
This module crops a w-size “horizon” window from the concatenated masks of all objects Ot

centered on the expected location of Xt
:,:,i, where w denotes the maximum effective range of relations.

Then, the cropped object masks are respectively concatenated with the constant x-coordinate and
y-coordinate meshgrid map (to make networks more sensitive to the spatial information) and fed
into the corresponding Relation Nets (RN) according to their classes. We use Ct

:,:,i,j to denote
the cropped mask that crops the j-th object class Ot

:,:,j centered on the expected location of the
i-th dynamic instance (the class it belongs to is denoted as ci, 1 ≤ ci ≤ nD). The effect of
object class j on class ci, Et(ci, j) ∈ R2×na (na denotes the number of actions) is calculated as,
Et(ci, j) = RNci,j

(
concat

(
Ct

:,:,i,j ,Xmap,Ymap
))
. Note that there are total nD × nO RNs for

nD × nO pairs of object classes that share the same architecture but not their weights. To handle the
partial observation problem, we add an Inertia Nets (IN) to learn the self-effects of an object class
through historical states, Et

self(ci) = INci

(
concat

(
Xt
:,:,i,X

t+1
:,:,i , . . . ,X

t+h
:,:,i

))
, where h is the history

length and there are total nD INs for nD dynamic object classes that share the same architecture but
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not their weights. To predict the motion vector mt
i ∈ R2 for the i-th dynamic instance, all these

effects are summed up and then multiplied by the one-hot coding of action at ∈ {0, 1}na , that is,
mt

i =
((∑

j E
t(ci, j)

)
+ Et

self(ci)
)
· at.

Background Extractor. This module extracts the static background of input image based on the
static object masks learned by Object Detector and then it is combined with the predicted dynamic
instances to predict the next visual observation. As Object Detector can decompose its observation
into objects in an unseen environment with a different object layout, Background Extractor is able
to generate a corresponding static background and support the visual observation prediction in
novel environments. Specifically, Background Extractor maintains an external background memory
B ∈ RH×W×3 which is continuously updated (via moving average) by the static object mask
learned by Object Detector. Denoting α as the decay rate, the updating formula is given by, Bt =
αBt−1 + (1− α)It

∑
i St

:,:,i, B0 = 0.

Prediction and Training Loss. At the output end of our model, the prediction of the next frame is
produced by merging the learned object motions and the background Bt. The pixels of a dynamic
instance can be calculated by masking the raw image with the corresponding instance mask and we
can use Spatial Transformer Network (STN) [9] to apply the learned instance motion vector mt

i on
these pixels. First, we transform all the dynamic instances according to the learned instance-level
motions. Then, we merge all the transformed dynamic instances with the background image calculated
from Background Extractor to generate the prediction of the next frame. In this paper, we use the
pixel-wise l2 loss to restrain image prediction error, denoted as Lprediction. To get earlier feedback
before reconstructing images and facilitate the training process, we add a highway loss, Lhighway =∑

i

ww(ūi, v̄i)
t + mt

i − (ūi, v̄i)
t+1
ww2

2
, where (ūi, v̄i)

t is the excepted location of i-th instance mask
Xt
:,:,i. In addition, we add a proposal loss to utilize the dynamic instance proposals provided by the

abstracted problem to guide our optimization, which is given by Lproposal =
ww∑

i(D
t
:,:,i − Pt

:,:,i)
ww2

2
,

where P denotes the dynamic instance region proposals computed by the more abstract learning level
(i.e., dynamic instance segmentation level). The total loss of the dynamics learning level is given by
combining the previous losses with different weights,

LDL = Lhighway + λ1Lprediction + λ2Lproposal

A.2 Dynamic Instance Segmentation Level

This level aims to generate region proposals of dynamic instances to guide the learning of object
masks and facilitate instance localization at the level of dynamics learning. The architecture is shown
in Figure 1. Instance Splitter aims to identify regions, each of which potentially contains one dynamic
instance. To learn to divide different dynamic object instances onto different masks, we use the
discrepancy loss Linstance described in Section A.1 to train Instance Splitter. Considering that one
object instance may be split into smaller patches on different masks, we append a Merging Net (i.e.,
a two-layer CNN with 1 kernel size and 1 stride) to Instance Splitter to learn to merge redundant
masks by a merging loss Lmerge based on the prior that the patches of the same instance are adjacent
to each other and share the same motion. In addition, we add a foreground proposal loss Lforground to
encourage attentions on the dynamic regions. The total loss of this level is given by combining these
losses with different weights,

LDIS = Linstance + λ3Lmerge + λ4Lforground

For more complex domains with arbitrary deformation and appearance change, MAOP is also readily
to incorporate the vanilla Mask R-CNN [10] or other off-the-shelf supervised object detection methods
[11] as a plug-and-play module into our framework to generate region proposals of dynamic instances.
In addition, although the network structure of this level is similar to Object Detector in the level of
dynamics learning, we do not integrated them together as a whole network because the concurrent
learning of both object representations and dynamics model is not stable. Instead, we first learn the
coarse object instances only based on the spatial-temporal consistency of locomotion and appearance
pattern, and then use them as proposal regions to perform object-oriented dynamics learning at the
more fine-grained level, which in turn fine-tunes the object representations.

8



A.3 Motion Detection Level

At this level, we employ foreground detection to detect changing regions from a sequence of image
frames and provide coarse dynamic region proposals Fp for assisting in dynamic instance segmen-
tation. In our experiments, we use a simple unsupervised foreground detection approach proposed
by Lo and Velastin [12]. Our framework is also compatible with many advanced unsupervised
foreground detection methods [13, 14, 15, 16] that are more efficient or more robust to moving
camera. These complex unsupervised foreground detection methods have the potential to improve
the performance but are not the focus of this work.

Appendix B Instance Localization

Instance localization is a common technique in context of supervised region-based object detection
[17, 18, 19, 10, 11], which localizes objects on raw images with regression between the predicted
bounding box and the ground truth. Here, we propose an unsupervised approach to perform dynamic
instance localization on dynamic object masks learned by Object Detector. Our objective is to sample
a number of region proposals on the dynamic object masks and then select the regions, each of which
has exactly one dynamic instance. In the rest of this section, we will describe these two steps in
details.

Region proposal sampling. We design a learning-free sampling algorithm for sampling region
proposals on object masks. This algorithm generates multi-scale region proposals with a full coverage
over the input mask. Actually, we adopt multi-fold full coverage to ensure that pixels of the potential
instances are covered at each scale. The detailed algorithm is described in Algorithm 2.

Instance mask selection. Instance mask selection aims at selecting the regions, each of which
contains exactly one dynamic instance, based on the discrepancy loss Linstance (Section A.1). To
screen out high-consistency, non-overlapping and non-empty instance masks at the same time,
we integrate Non-Maximum Suppression (NMS) and Selective Search (SS) [20] in the context of
region-based object detection [17, 18, 19, 10, 11] into our algorithm.

Algorithm 2 Region proposal sampling.
Input: Dynamic object mask D ∈ [0, 1]H×W , the number of region proposal scales nS , the folds of

full coverage T .
1: Initialize proposal set P = ∅.
2: Binarize D to get the indicator for the existence of objects
3: for l = 1 . . . nS do
4: Select scale dx, dy depend on the level l.
5: for t = 1 . . . T do
6: Initialize candidate set C = {(i, j)|Di,j = 1}.
7: while C 6= ∅ do
8: Sample a pixel coordinate (x, y) from C.
9: Get a box B = {(i, j)| |i− x| ≤ dx, |j − y| ≤ dy}.

10: if B is not empty then
11: Insert B into the proposal set P← P ∪ {B}.
12: end if
13: Update the remain candidate set C← C \ B.
14: end while
15: end for
16: end for
17: return P
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Appendix C Tables and Figures

Models
Training environments Unseen environments

1-5† 1-5‡ 1-5† 1-5‡

Agent All Agent All Agent All Agent All

MAOP 0.84 0.90 0.87 0.93 0.83 0.89 0.83 0.92
0-error OODP 0.01 0.29 0.01 0.32 0.01 0.18 0.02 0.15

accuracy AC Model 0.39 0.64 0.48 0.75 0.03 0.18 0.04 0.23
CDNA 0.13 0.78 0.41 0.84 0.10 0.77 0.16 0.79

MAOP 0.99 1.00 0.97 0.97 0.99 0.99 0.98 0.97
1-error OODP 0.05 0.52 0.04 0.56 0.06 0.39 0.07 0.39

accuracy AC Model 0.48 0.80 0.57 0.87 0.07 0.37 0.14 0.45
CDNA 0.26 0.82 0.57 0.89 0.22 0.81 0.36 0.84

MAOP 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.98
2-error OODP 0.14 0.66 0.12 0.67 0.16 0.59 0.16 0.56

accuracy AC Model 0.53 0.85 0.63 0.90 0.12 0.53 0.24 0.64
CDNA 0.37 0.84 0.66 0.92 0.36 0.84 0.49 0.87

Table C2: Performance of the object dynamics prediction on 1-5 generalization problem in Flappy
Bird. † and ‡ indicates training with only 100 and 300 samples.

Model Monster Kong Flappy Bird

1-5† 1-5 2-5 3-5 1-5† 1-5‡

MAOP 1.96 0.34 0.38 0.42 0.30 0.34
Table C3: Average motion prediction error in two experiment environments. † and ‡ correspond to
the same sample restriction experiments in Table 1 and C2
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Figure C4: Learning curves for the dynamics prediction in unseen environments on Monster Kong.
The curves with "Agent" notation represent the learning curves of the agent, while those with "All"
notation indicate the learning curves of all dynamic objects.

Figure C5: Our discovery of the controllable agent. This histogram plotting the ground-truth label
distribution of our discovered action-controlled agents clearly demonstrates that our discovery of the
controllable agent achieves perfect 100% accuracy.
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Appendix D Implementation details for experiments

Object Detector in the dynamics learning level and Instance Splitter in the dynamic instance segmen-
tation level have similar architectures with Object Detector in OODP [5]. To augment the interactions
of instances when training Instance Splitter, we random sample two region proposals and combine
them into a single region proposal with double size.

Denote Conv(F,K, S) as the convolutional layer with the number of filters F , kernel size K and
stride S. Let R(), S() and BN() denote the ReLU layer, sigmoid layer and batch normalization layer
[21]. The 5 convolutional layers in Object Detector can be indicated as R(BN(Conv(16, 5, 2))),
R(BN(Conv(32, 3, 2))), R(BN(Conv(64, 3, 1))), R(BN(Conv(32, 1, 1))), and
BN(Conv(1, 3, 1)), respectively. The 5 convolutional layers in Instance Detector can be
indicated as R(BN(Conv(32, 5, 2))), R(BN(Conv(32, 3, 2))), R(BN(Conv(32, 3, 1))),
R(BN(Conv(32, 1, 1))), and BN(Conv(1, 3, 1)), respectively. The architecture of Foreground De-
tector is similar to binary-class Object Detector and the 5 convolutional layers in Foreground Detector
can be indicated as R(BN(Conv(32, 5, 2))), R(BN(Conv(32, 3, 2))), R(BN(Conv(32, 3, 1))),
R(BN(Conv(32, 1, 1))), and S(BN(Conv(1, 3, 1))), respectively. The CNNs in Rela-
tion Net are connected in the order: R(BN(Conv(16, 3, 2))), R(BN(Conv(32, 3, 2))),
R(BN(Conv(32, 3, 2))), and R(BN(Conv(32, 3, 2))). The last convolutional layer is reshaped
and fully connected by the 64-dimensional hidden layer and the 2-dimensional output layer
successively. Inertia Net has the same architecture and hyperparameters as Relation Net.

The hyperparameters for training MAOP in Monster Kong and Flappy Bird are listed as follows:

• The weights of losses, λ1, λ2, and λ3, are 100, 1, and 10, respectively. In addition, all the l2
losses are divided by HW to keep invariance to the image size.

• Batch size is 16 and the maximum number of training steps is set to be 1× 105.
• The optimizer is Adam [22] with learning rate 1× 10−3.
• The raw images of Monster Kong and Flappy Bird are resized to 160 × 160 × 3 and

160× 80× 3 , respectively.
• The size of the horizon window w is 33 on Monster Kong, 41 on Flappy Bird.
• The maximum number of static and dynamic masks is 4 and 12 on Monster Kong, on Flappy

Bird.
• The maximum instance number of each object class is set to be 15.
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