
Inverse Optimal Power Flow: Assessing the
Vulnerability of Power Grid Data

Priya L. Donti
Dept. of Computer Science

Dept. of Engr. & Public Policy
Carnegie Mellon University

Pittsburgh, PA 15213
pdonti@cs.cmu.edu

Inês Lima Azevedo
Dept. of Engr. & Public Policy

Carnegie Mellon University
Pittsburgh, PA 15213
iazevedo@cmu.edu

J. Zico Kolter
Dept. of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
zkolter@cs.cmu.edu

Abstract

We formulate inverse optimal power flow, an algorithm that assesses the extent to
which private power grid data is exposed by publicly-available data by inverting
the AC optimal power flow optimization problem. We find that we are able to learn
private information such as electricity generation costs and (to some extent) grid
structural parameters on a 14-node test case.

1 Introduction

In the electricity sector, there is a great need to protect critical information that could compromise fair
electricity market operation or power grid cybersecurity [1, 2]. At the same time, grid operators such
as PJM and governmental entities such as the Environmental Protection Agency regularly publish
quantities such as five-minute electricity prices and hourly power outputs of electricity generators
for the purposes of market transparency and emissions monitoring. We investigate the question of
whether and to what extent critical power grid information is exposed by published information,
given our knowledge that these private and public quantities are related via an optimization problem
called AC optimal power flow (ACOPF). To do this, we formulate an algorithm called inverse optimal
power flow (inverse OPF) that uses a neural network to learn private quantities from public quantities.

2 Related work

Inverse problems. Inverse problems seek to predict model inputs or decision parameters from
model outputs. For instance, prior work has used techniques from game theory, graph theory, and
bi-level optimization to identify power grid structure [3] and energy demands [4] from grid outputs.
Our work seeks to apply techniques from optimization and deep learning to inverse power flow.

Differentiating through optimization problems. Recent work has explored differentiating
through optimization problems within deep networks [5, 6]. We employ some of the innovations in
differentiable quadratic programming to formulate and solve our inverse optimal power flow problem.

3 Background: AC optimal power flow

We now present the AC optimal power flow (ACOPF) optimization problem [7], which plays a crucial
role in our formulation of inverse optimal power flow. ACOPF is solved by power system operators
to pick power system quantities that minimize the overall cost of delivering power. Specifically, for a
power grid with n nodes, operators must determine quantities z ≡

[
angle(v)T |v|T pTg qTg

]T
,

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

where v ∈ Cn are the voltages at each node and pg, qg ∈ Rn are the real and imaginary parts of the
power injections (e.g. from electricity generators) at all system nodes. These quantities solve

minimize
z≡[angle(v)T |v|T pTg qTg]

T
fc(pg)

subject to Az = b (linear equality constraints)
Gz ≤ h (linear inequality constraints)
(pg − pd) + (qg − qd)j = diag(v)Ȳ v̄ (power flow constraint).

(1)
Here, fc : Rn → R is a cost function parameterized by electricity generation costs c; pd, qd ∈ Rn
are the real and imaginary power demands at all system nodes; Y ∈ Cn×n is the nodal admittance
matrix that describes how power flows throughout the system; the linear equality and inequality
constraints encode attributes of system nodes, lines, and generators; and we use the notation x̄ to
denote the complex conjugate of x. We note that the dual variable λ ∈ Rn on the power flow
constraint corresponds to the electricity prices at each node.

In general, problem (1) is non-convex and NP-hard. As such, it is in practice common to assume
that the objective is quadratic, linearize the power flow constraint using its Jacobian J at some point
z0 [7], and then solve the resulting problem iteratively via sequential quadratic programming [8].
Specifically, we write the linearized quadratic program corresponding to (1) as

minimize
z=[angle(v)T |v|T pTg qTg]

T
pTg diag(cq)pg + cTa pg

subject to Ãz = b̃

Gz ≤ h,

(2)

where Ã =
[
AT J(z0)T

]T
and b̃ =

[
bT k(z0)T

]T
collect both the original linear constraints and

the linearized power flow constraint J(z0)z = k(z0), and where c =
[
cTq cTa

]T
now contains the

quadratic and linear cost parameters cq, ca ∈ Rn, respectively, for power generation at each node.

4 Inverse optimal power flow

We now describe our inverse optimal power flow algorithm, which attempts to learn private electric
grid information from public information via ACOPF. Specifically, given public information on
real powers pg, pd and electricity prices λ, we seek to estimate private generator cost parameters c
and the nodal admittance matrix Y , where all variables are as described in Section 3. We do so by
constructing estimates ĉ? and Ŷ ? of c and Y , respectively, whose corresponding ACOPF outputs are
close to the true values of the publicly-available quantities pg and λ. Mathematically, this problem
can be formulated under some loss function ` on publicly-available quantities as

ĉ?, Ŷ ? = argmin
ĉ,Ŷ

`
(

(pg, λ), (p̂g, λ̂)
)

subject to p̂g, λ̂ = ACOPF(ĉ, Ŷ , pd),

(3)

where the constraint denotes that p̂g and λ̂ are the values of generator power injections and power
prices produced by solving the ACOPF problem (1) with cost parameters ĉ, admittance matrix Ŷ , and
nodal power demands pd. We solve this problem iteratively via Algorithm 1, using backpropagation
within a neural network to compute the needed gradients. We note that while (3) maximizes the
agreement between true and estimated public quantities, the objective of actual interest is the
agreement between the true and estimated private quantities. However, there are potentially multiple
distinct sets of inputs to ACOPF that would produce identical public outputs. Thus, we must use
enough data when executing Algorithm 1 to ensure that there is a unique set of private parameters
that can produce the correct public outputs across all input data points.

4.1 Optimizing the inverse OPF problem

2

Sq
ua

re
d

er
ro

r
(o

ve
r p

riv
at

e
qu

an
tit

ie
s)

Number of public data points Number of public data points Number of public data points

Figure 1: Squared error of guesses for quadratic (cq) and linear (ca) generator costs when all
generators’ costs are unknown (lower is better). Each plotted point represents five runs over a given
amount of public data. We find that all cost parameters are identifiable with as little as 5 data points.

Algorithm 1 Inverse OPF Optimization

1: input: {(p(i)g , λ(i)) | i = 1, . . . ,m} // public data
2: initialize ĉ, Ŷ // some initial guess

3: for t = 1, . . . , T do
4: for i = 1, . . . ,m do
5: compute `

(
(p

(i)
g , λ(i)), (p̂g

(i), λ̂(i))
)

6: // update guesses if loss has not converged
7: if `((p(i)g , λ(i)), (p̂g

(i), λ̂(i))) 6= 0 then
8: update ĉ with∇ĉ `((p(i)g , λ(i)), (p̂g

(i), λ̂(i)))

9: update Ŷ with∇Ŷ `((p
(i)
g , λ(i)), (p̂g

(i), λ̂(i)))
10: else
11: return ĉ, Ŷ
12: end if
13: end for
14: end for

The main technical challenge of this
approach is in computing the gra-
dients ∇θ `((p(i)g , λ(i)), (p̂g

(i), λ̂(i)))

for each θ ∈ {ĉ, Ŷ }, as this involves
taking the gradient through the solu-
tions to the ACOPF optimization prob-
lem. Specifically, we must compute
the terms
∂`

∂θ
=

∂`

∂p̂g(θ)

∂p̂g(θ)

∂θ
+

∂`

∂λ̂(θ)

∂λ̂(θ)

∂θ
,

(4)
where ∂p̂g(θ)

∂θ and ∂λ̂(θ)
∂θ are the Ja-

cobians of optimal primal and dual
variables, respectively, in problem (1),
with respect to our parameter estimate
θ (and where we denote the depen-
dence of p̂g and λ̂ on each θ here ex-
plicitly). To compute these Jacobians,
we use the method presented in [5] to

take gradients through the optimal quadratic program (2) solved during the last iteration of sequential
quadratic programming. At a high level, this involves differentiating through the KKT optimality
conditions of (2) and using the implicit function theorem to get a set of linear equations we can solve
to get the necessary gradients. More details on this approach are described in Appendix A.

5 Experiments

We test our algorithm on a modified version of the IEEE 14-bus test case with three generators located
at nodes 1, 2, and 8, respectively. More details about this system are included in Appendix B. We
train our network on up to 201 public outputs generated from Grid Optimization (GO) Competition
simulations [9]. We use the loss function

`((pg, λ), (p̂g, λ̂)) = 100‖pg − p̂g‖22 + ‖λ− λ̂‖22
for (1), where the weighting term adjusts for differences in magnitude between values of pg and λ.

5.1 Cost parameters

We test the scenario in which all electricity generation cost parameters are unknown (but the admit-
tance matrix is known). Results for runs over different amounts of training data are shown in Figure 1,
with initial guesses for each cost parameter sampled from a Gaussian distribution to encode market
participants’ prior knowledge of cost distributions. We find that we are able to completely learn the
cost parameters for this system with as little as 5 public data points. Even though our test system is
small, given that real power grid data is published with hourly granularity (i.e. 8760 data points per
year), there is cause to believe that publicly-available data may expose generator cost parameters on
the actual power system as well.

3

5.2 Admittance matrix parameters

Loss (over public quantities)

S
qu

ar
ed

 e
rr

or
 (o

ve
r p

riv
at

e
qu

an
tit

ie
s)

Figure 2: Squared error of sample admit-
tance matrix parameters (real and imagi-
nary parts plotted separately) as training
loss on our 201 public data points goes to
zero. Our estimate for Y12,13 converges,
but our estimate for Y1,4 diverges.

Admittance matrix parameters are potentially more chal-
lenging to learn than cost parameters, as the choice of
admittance matrix parameters can potentially render prob-
lem (1) infeasible before or during training. As such, in
our preliminary experiments, we test whether we can learn
one admittance matrix parameter at a time, where our ini-
tial guess involves perturbing this parameter with Gaussian
noise reflecting the variability across all admittance matrix
parameters. (We assume all other cost and admittance
matrix parameters are known.) As illustrated via represen-
tative results in Figure 2, our preliminary tests suggest that
some admittance matrix parameters are readily identifiable
while others may be harder to identify.

6 Conclusions and future work

We find that published power grid information can expose
private information. Future work includes a more thor-
ough investigation of admittance matrix parameters on the
14-node system, as well as assessments on larger systems.
While we address power systems here, our method could
be applied to any setting in which private and public in-
formation are related via a known optimization problem;
extension of our method to other settings also remains as
important future work.

Acknowledgments

This work is supported by the Department of Energy’s
Computational Science Graduate Fellowship under grant

number DE-FG02-97ER25308.

References
[1] Frank A Wolak. Measuring Unilateral Market Power in Wholesale Electricity Markets: The

California Market, 1998-2000. American Economic Review, 93(2):425–430, 2003.

[2] David Watts. Security and vulnerability in electric power systems. In 35th North American
power symposium, volume 2, pages 559–566, 2003.

[3] Ye Yuan, Omid Ardakanian, Steven Low, and Claire Tomlin. On the Inverse Power Flow Problem.
arXiv preprint arXiv:1610.06631, 2016.

[4] James Anderson, Fengyu Zhou, and Steven H Low. Disaggregation for Networked Power
Systems. In 2018 Power Systems Computation Conference (PSCC), pages 1–7. IEEE, 2018.

[5] Brandon Amos and J Zico Kolter. OptNet: Differentiable Optimization as a Layer in Neural
Networks. In International Conference on Machine Learning, pages 136–145, 2017.

[6] Josip Djolonga and Andreas Krause. Differentiable Learning of Submodular Models. In Advances
in Neural Information Processing Systems, pages 1013–1023, 2017.

[7] Allen J. Wood, Bruce F. Wollenberg, and Gerald B. Sheblé. Optimal Power Flow, chapter 8,
pages 350–402. John Wiley & Sons, 2014.

[8] Paul T Boggs and Jon W Tolle. Sequential Quadratic Programming. Acta numerica, 4:1–51,
1995.

[9] Grid Optimization (GO) Competition. Datasets. https://gocompetition.energy.gov/
content/datasets, 2018.

4

https://gocompetition.energy.gov/content/datasets
https://gocompetition.energy.gov/content/datasets

A Details on computing gradients through ACOPF

To compute the gradients ∇θ `((p(i)g , λ(i)), (p̂g
(i), λ̂(i))) for each θ ∈ {ĉ, Ŷ }, we must take the

gradient through the solutions to the ACOPF optimization problem. Specifically, we must compute
the terms

∂`

∂θ
=

∂`

∂p̂g(θ)

∂p̂g(θ)

∂θ
+

∂`

∂λ̂(θ)

∂λ̂(θ)

∂θ
, (A.1)

where ∂p̂g(θ)
∂θ and ∂λ̂(θ)

∂θ are the Jacobians of optimal primal and dual variables, respectively, in
problem (1), with respect to our parameter estimate θ (and where we denote the dependence of p̂g and
λ̂ on each θ here explicitly). To compute these Jacobians at the last sequential quadratic programming
iterate, we use the method described in [5], implicitly differentiating through the KKT optimality
conditions of (2) to obtain linear equations we can solve to obtain the required gradients:

diag(cq) GT ÃT

diag(ν?)G diag(Gz? − h) 0

Ã 0 0

∂z?

∂θ

∂ν?

∂θ

∂κ̃?

∂θ

 =

−∂ diag(cq)

∂θ z? − ∂ca
∂θ −

∂GT

∂θ ν
? − ∂ÃT

∂θ κ̃
?

−diag(ν?)∂G∂θ z
? + diag(ν?)∂h∂θ

−∂Ã∂θ z
? + ∂b̃

∂θ

 ,
(A.2)

where ν are the dual variables on the linear inequality constraints, and κ̃ =
[
κT λT

]T
contains

the dual variables κ on the original linear inequality constraints and λ on the linearized power flow
constraint in (1). Here, we note that Ã =

[
AT J(z?)T

]T
and b̃ =

[
bT k(z?)T

]T
. While this

equation may look complex, fundamentally, the left side of this equation contains the generalized
Jacobian of the KKT optimality conditions of our convex problem, and the terms on the right side are
the gradients of optimization problem parameters.

In practice, we solve a slightly different set of equations to efficiently compute these gradients in the
context of a neural network, similar to the method described in [5]. In particular, we modify Equation
(7) of [5] to incorporate the gradients of the loss with respect to both the optimal primal variable and
the optimal dual variables on the equality constraints as[

dz
dν
dκ̃

]
=

diag(cq) GT diag(ν?) ÃT

G diag(Gz? − h) 0
Ã 0 0

−1

(
∂`
∂z?

)T
0(
∂`
∂κ̃?

)T
 . (A.3)

We then use the resultant values of dz , dν , and dκ̃ in the rest of the computations presented in [5].

5

B Details on the 14-node test case

We test our algorithm on a modified version of the IEEE 14-bus test case1 with three generators
located at nodes 1, 2, and 8, respectively. A schematic of this system is shown in Figure B.1. The
power generation costs for each generator are f1(pg1) = 2p2g1 + 5pg1 , f2(pg2) = 4p2g2 + 2pg2 ,
and f8(pg8) = 5p2g8 + 1pg8 , and the primitive admittance matrix parameters used to construct the
admittance matrix can be found at the link in Footnote 1.

Figure B.1: The 14-node system on which we run our experiments.

1https://www.cs.cmu.edu/~zkolter/course/15-884/assignments.html

6

https://www.cs.cmu.edu/~zkolter/course/15-884/assignments.html

	Introduction
	Related work
	Background: AC optimal power flow
	Inverse optimal power flow
	Optimizing the inverse OPF problem

	Experiments
	Cost parameters
	Admittance matrix parameters

	Conclusions and future work
	Details on computing gradients through ACOPF
	Details on the 14-node test case

