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Abstract

We present a novel deep-learning-based robust nonlinear controller (Neural-
Lander) for stable quadrotor control during landing. Our approach blends together
a nominal dynamics model coupled with a DNN that learns the high-order in-
teractions, such as the complex interactions between the ground and multi-rotor
airflow. Our approach has several attractive properties. First, by blending with
a nominal dynamics model, our learning approach is very sample efficient, and
our experiments show strong results using only 5 minutes of real-world training
data. Second, by employing spectral normalization to constrain the DNN to have
bounded Lipschitz behavior, we can design a nonlinear feedback linearization
controller using the learned model and prove system stability with disturbance
rejection. To the best of our knowledge, this is the first DNN-based nonlinear
feedback controller with stability guarantees that can utilize arbitrarily large neural
nets. Finally, this Lipschitz behavior also enables generalization so that the NN can
make reliable predictions outside of its training distribution support. We demon-
strate in live experiments that Neural-Lander can land smoothly in scenarios where
the conventional approaches such as a PD controller cannot land precisely at all.

1 Introduction

Unmanned Aerial Vehicles (UAVs) require high precision control of aircraft positioning, especially
during landing and take-off. This problem is challenging largely due to complex interactions of
multi-rotor airflows with the ground (ground effect). Prior work in the aerial robotics community
has largely focused on mathematical modeling (e.g. [1]). These ground-effect models are later used
to approximate near-ground aerodynamics and integrated into controller design (e.g. [2]). However,
existing theoretical ground effect models are derived based on steady-flow conditions, whereas most
practical cases exhibit unsteady flow. Alternative approaches, such as integral or adaptive control
methods, often suffer from slow response and delayed feedback. Given these limitations, the precision
of existing fully automated systems for UAVs are still insufficient for landing and take-off, thereby
necessitating the guidance of a human UAV operator during those phases.

To capture complex aerodynamic interactions without not being overly-constrained by conventional
modeling assumptions, we take a learning approach to build a ground effect model using deep neural
networks (NDNs). However, incorporating black-box models into a UAV controller faces two key
challenges. First, due to high-dimensionality, NNs can be unstable and generate unpredictable output,
which makes the system susceptible to instability in the feedback control loop. Second, DNNs are
often difficult to analyze, which makes it difficult to design provably stable DNN-based controllers.

Contributions. We propose a learning-based controller, Neural-Lander, to improve precision of
quadrotor landing with guaranteed stability. Our framework does not assume any fixed ground-effect
model and instead learns it directly from real-world data collected from a quadrotor. Our overall
dynamics model blends together a nominal dynamics model with a DNN to capture the high-order
interaction effects between the ground and multi-rotor airflow.
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We train DNNs with spectral normalization (SN) of layer-wise weight matrices. We prove that SN
of DNNs is stable for closed-loop control and that the proposed controller is globally exponentially
stable under bounded learning errors. This is achieved by exploiting the Lipschitz bound of spectrally
normalized DNNs. It has also been shown SN of DNNs leads to good generalization, i.e. stability in
a learning-theoretic sense [3]. It is intriguing that SN simultaneously guarantees stability both in a
learning-theoretic and a control-theoretic sense.

We empirically validate Neural-Lander for trajectory tracking of quadrotor during take-off, landing
and near ground maneuvers. We show that Neural-Lander is able to land a quadrotor much more
accurately than a naive PD controller with a pre-identified system. In particular, we show that
Neural-Lander can decrease error in z direction from 0.13m to zero, and mitigate x and y drifts by
90% and 34% respectively, in 1D landing. Meanwhile, Neural-Lander can decrease z error from
0.12m to zero, in 3D landing. We also demonstrate that the learned ground-effect model can handle
temporal dependency, and is an improvement over the steady-state theoretical models in use today.
Our experiments also showcase the data efficiency of our approach, as the DNN component was
trained on only 5 minutes of real-world training data, which highlights the potential of properly
integrating nominal physics-based models with black-box learning.

2 Problem Statement: Precise Quadrotor Landing

Consider the following quadrotor dynamics. Given quadrotor states as global position p ∈ R3,
velocity v ∈ R3, attitude rotation matrix R ∈ SO(3), and body angular velocity ω ∈ R3

ṗ = v, mv̇ = mg +Rfu + fa

Ṙ = RS(ω), Jω̇ = Jω × ω + τu + τa
(1)

where g = [0, 0,−g]> is the gravity vector; fu = [0, 0, T ]> and τu = [τx, τy, τz]> are the total
thrust and body torques from four rotors predicted by a nominal model. Also, η = [T, τx, τy, τz]>

denotes the output wrench, and the linear equation u = [n21, n
2
2, n

2
3, n

2
4]> relates the control input of

squared motor speeds to the output wrench with its nominal relation given as η = B0u:

B0 =

[ cT cT cT cT
0 cT larm 0 −cT larm

−cT larm 0 cT larm 0
−cQ cQ −cQ cQ

]
(2)

where cT and cQ denote some empirical coefficient values for force and torque generated by an
individual rotor, and larm denotes the length of each rotor arm.

The key difficulty of precise landing is the influence of unknown disturbances fa = [fa,x, fa,y, fa,z]>

and torques τa = [τa,x, τa,y, τa,z]>, which originate from complex aerodynamic interactions between
the quadrotor and the ground, such as the vertical aerodynamic force fa,z . Also, as ‖v‖ increases, air
drag will be exacerbated, which contributes to fa.

3 Neural Lander Controller Design and Nonlinear Stability Analysis

Learning High-Order Interactions. Our learning goal is to estimate f̂a(ζ,u) as the approximation
to the disturbance aerodynamic forces, with ζ being the partial states used as input features. In
particular, we wish to estimate the residual forces not accounted for by a nominal dynamics model.
The learning problem is thus a fairly standard supervised regression problem given real-world training
data collected from a rotorcraft of interest flying close to the ground.

We employ spectral normalization to stablize DNN training by constraining the Lipschitz constant
of the objective function. Spectral normalization has also been shown to generalize well [4] and in
machine learning generalization is a notion of stability. Mathematically, the Lipschitz constant of a
function ‖f‖Lip is defined as the smallest value such that ∀x,x′ : ‖f(x) − f(x′)‖2/‖x − x′‖2 ≤
‖f‖Lip. It is known that the Lipschitz constant of a general differentiable function f is the maximum
spectral norm (maximum singular value) of its gradient over its domain ‖f‖Lip = supx σ(∇f(x)).

Learning-based Discrete-time Nonlinear Controller. Using our learned dynamics, the desired
total force can be written as fd = f̄d − f̂a(ζ,u), where f̄d is the desired force from the nominal PD
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Figure 1: (a) Learned f̂a,z compared to the ground effect model with respect to height z. vz = 0
m/s and other dimensions of state are fixed. Ground truth points are from hovering data at different
heights. (b) Heatmaps of learned f̂a,z versus z and vz , and other dimensions are fixed. (Left) Learned
f̂a,z from ReLU network with spectral normalization with ‖f‖Lip = 1. (Right) Learned f̂a,z from
ReLU network without spectral normalization with ‖f‖Lip = 4.97.

controller. Because of the dependency of f̂a on u, the control synthesis problem here uses a non-affine
control input for u:

B0u =

[(
f̄d − f̂a(ζ,u)

)
· k̂

τd

]
(3)

With ηd = [Td, τ
>
d ]>, We propose the following fixed-point iterative method for solving (3):

u(t) = uk = B−10 ηd (uk−1), where uk−1 is the control input from the previous time-step.

Stability Guarantee. With a Lipschitz bound on f̂a(ζ,u), we can show convergence of our controller.

Lemma 3.1 Define mapping uk = F(uk−1) based on the above controller u:

F(u) = B−10

[(
f̄d − f̂a(ζ,u)

)
· k̂

τd

]
. (4)

If f̂a(ζ,u) is La-Lipschitz continuous, and σ(B−10 ) · La < 1; then F(·) is a contraction mapping,
and uk converges to unique solution of u∗ = F(u∗).

Second, we can show stability rigorously under Assumptions 1-3.

Assumption 1 The desired states along the position trajectory pd(t), ṗd(t), and p̈d(t) are bounded.

Assumption 2 u updates much faster than position controller.

Note that the frequencies of attitude control (> 100 Hz) and motor speed control (> 5 kHz) are much
higher than that of the position controller (≈ 10 Hz) in practice.

Assumption 3 The approximation error of f̂a(ζ,u) over the compact sets Z , U is upper bounded by
εm = supζ∈Z,u∈U‖ε(ζ,u)‖, where ε(ζ,u) = fa(ζ,u)− f̂a(ζ,u).

4 Experiments

DNN Prediction Performance. Training data was collected from an Intel Aero quadrotor. In order
to estimate the effect of disturbance force fa, we collected states and control inputs, while flying
the drone close to the ground, manually controlled by an expert pilot, for 5 minutes. The inputs to
our model are: f̂a = f̂a(z,v, R,u) = f̂a(ζ,u), where z, v, R, u correspond to global height, global
velocity, attitude, and control input. We estimate f̂ using a 4-layer ReLU network, with input and the
output dimensions 12 and 3, respectively. We use spectral normalization (SN) so that the Lipschitz
constant of our ReLU network is upper bounded. We also experimented with another ReLU network
without spectral normalization, to further understand the benefits of SN.
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Figure 2: PD and Neural-Lander performance in (a) 1D and (b) 3D take-off and landing. Means
(solid curves) and standard deviations (shaded areas) of 10 trajectories.

Fig. 1(a) shows the comparison between the estimated fa from DNN and the theoretical ground effect
model in [2, 5] as we vary the global height z (assuming T = mg when z =∞). We can see that
our DNN can achieve much better estimates of the ground effects than the theoretical ground effect
model. To understand the benefits of SN, we calculated learned f̂a,z from the DNNs with and without
SN. Fig. 1(b) shows the results. Note that -1 m/s to 1 m/s is covered in our training set but -2 m/s to
-1 m/s is not. We see that: (1) Ground effect: f̂a,z increases as z decreases, which is also shown in
Fig. 1(a); (2) Air drag: f̂a,z increases as the drone goes down (vz < 0) and it decreases as the drone
goes up (vz > 0); (3) Generalization: the spectral normalized DNN is much smoother and can also
generalize to new input domains not contained in the training set. In [4], the authors theoretically
show that spectral normalization can provide tighter generalization guarantees on unseen data, which
is consistent with our empirical results.

Control Performance. We used PD controller as the baseline controller and implemented both the
baseline and Neural-Lander, as shown in Fig. 2. First we tested these two controller for the 1D
take-off/landing task, i.e., moving the drone from (0, 0, 0) to (0, 0, 1) and then returning it to (0, 0, 0).
Second we compare the controllers for the 3D take-off/landing task, i.e., moving the drone from
(0, 0, 0) to (0.5,−0.5, 1) and then returning it to (0, 0, 0). We can conclude that the main benefits
of our Neural-Lander are: (a) In both 1D and 3D cases, Neural-Lander can control the drone to
precisely land on the ground surface while the baseline controller cannot land due to the ground
effect. (b) In both 1D and 3D cases, Neural-Lander could mitigate drifts in x and y directions, as it
also learned about non-dominant aerodynamics such as air drag. In experiments, we observed a naive
un-normalized DNN (‖f‖Lip = 247) can even result in crash, which also implies the importance of
spectral normalization. Experimental video: https://youtu.be/C_K8MkC_SSQ
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