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Abstract

The physical world can be naturally sub-divided into discrete objects. Consequently,
in the pursuit of constructing ever more intelligent agents, devising methods for
reasoning and learning about objects should be regarded as an important goal.
Indeed, recent machine learning literature is replete with examples of the benefits
of object-like representations when modeling the physical world (e.g. Chang et al.
(2016)). However, in order to reason in terms of objects, agents need a way of
discovering and detecting objects from visual input - a task which we call unsu-
pervised object detection. This task has received significantly less attention in the
literature than its supervised counterpart, especially in the case of large images
containing many objects. In the current work, we develop a neural network archi-
tecture that effectively addresses this large-image, many-object setting. Through
a series of experiments, we demonstrate a number of features of our architecture:
that, unlike competing approaches, it is able to discover and detect objects in large,
many-object scenes and that it has a significant ability to generalize to images that
are larger and contain more objects than images encountered during training.

We introduce Spatially Invariant Attend, Infer, Repeat (SPAIR), an architecture for unsupervised
object detection that combines the unsupervised trainability of Attend, Infer, Repeat (AIR) (Eslami
et al., 2016) with the spatial invariance properties of recent work in supervised object detection,
particularly YOLO (Redmon et al., 2016). SPAIR is a Variational Autoencoder (VAE) (Kingma and
Welling, 2013) with a highly structured, object-like latent representation z, a convolutional (and thus
spatially invariant), object-detecting encoder network qφ(z|x), and a decoder network pθ(x|z) that
“renders” detected objects into a reconstructed image. We now describe each of these components.

Object-like Latent Representation. We first describe the representation scheme used by SPAIR for
describing objects in its latent layer. Given an image with shape (Himg,Wimg, 3), it will be useful to
spatially divide the image into an (H,W ) grid of cells, where H = dHimg/che, W = dWimg/cwe,
and ch/cw are fixed integers giving the cell height/width in pixels. We employ a representation that
allows a single object per cell (the extension to multiple objects per cell is straightforward).

For a cell with indices (i, j), i ∈ {0, . . . ,H − 1}, j ∈ {0, . . . ,W − 1}, the corresponding object is
described by the following variables:

zijwhat ∈ RA zijdepth ∈ R zijpres ∈ {0, 1} zijwhere ∈ R4

zijwhat is a vector with dimension A that stores appearance information for the object. zijdepth specifies
the relative depth of the object; in the output image, objects with lower depth appear on top of
objects with higher depth. zijpres is a binary variable specifying whether the object exists and should
be rendered to the output image. zijwhere decomposes as zijwhere = (zijy , z

ij
x , z

ij
h , z

ij
w ), where zijh and zijw

give the size of the object, and zijy and zijx give the position of the object relative to the current cell.
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Prior Distribution on Objects. A crucial component of a VAE is the prior distribution p(z) over
the latent variables. For all real-valued variables, we assume independent Normal distributions; the
moments of these distributions are model hyperparameters. For the binary random variables zijpres,
we design a prior that puts pressure on the network to reconstruct the image using as few objects
as possible (i.e. as few zijpres = 1 as possible), similar to the prior used by AIR. This pressure is
necessary for the network to extract quality object-like representations; without it, the network is free
to set all zijpres = 1, and use multiple latent objects to explain each object in the image.

Encoder Network. Our goal is to design an encoder network qφ(z|x) with spatially invariant
properties. To this end, a convolutional neural network econvφ (x) is first used to map from the
input image x to a feature volume with spatial dimensions (H,W ). Next, this volume is processed
sequentially cell-by-cell to produce objects, starting from the top left and proceeding row-by-row
toward the bottom right.

Processing a cell runs as follows. First, a multi-layer perceptron elatφ produces parameters
(µijwhere, σ

ij
where), (µ

ij
depth, σ

ij
depth) and βijpres for distributions over zijwhere, z

ij
depth and zijpres, respectively.

As input, elatφ accepts the feature vector (output of econv) at the current cell as well as sampled objects
at nearby cells that have already been processed. elat can thus be thought of as encompassing a set of
“lateral” connections which facilitate conditioning between nearby objects.

Next, values are sampled from the distributions. Concretely:

zijwhere ∼ N(µijwhere, σ
ij
where) zijdepth ∼ N(µijdepth, σ

ij
depth) zijpres ∼ Bernoulli(βijpres)

The sampled value of zijwhere is then used along with a spatial transformer T (Jaderberg et al., 2015) to
extract a glimpse from the image. This glimpse is processed by an object encoder network eobjφ to
yield parameters for a distribution over zijwhat, which is subsequently sampled:

µijwhat, σ
ij
what = eobjφ (T (x, zijwhere)) zijwhat ∼ N(µijwhat, σ

ij
what)

Decoder Network. The decoder network is responsible for rendering the detected objects back into
an image. First, an object decoder network dobjθ processes all zijwhat to yield a reconstruction of the
appearance of each object. Formally we have oij , αij = dobjθ (zijwhat) where oij is an RGB volume
with shape (Hobj ,Wobj , 3) (for fixed integers Hobj , Wobj), and αij is transparancy volume with
shape (Hobj ,Wobj , 1).

Appearances of all objects are then stitched together to yield a final image, with zijwhere used along
with a spatial transformer to give the objects the correct size and location. αij is multiplied by zijpres to
ensure that objects with zijpres = 0 are not drawn to the image. For objects that overlap spatially, zijdepth
values are used to parameterize a convex combination between the objects, acting as a differentiable
approximation of relative object depth. The output of rendering is an image xout, which parameterizes
pθ(x|z) as a set of independent, pixel-wise Bernoulli variables.

Training. In the VAE framework the Evidence Lower Bound (ELBO) is given by:

L(θ, φ) := Ez∼qφ(z|x) [log pθ(x|z)]−DKL(qφ(z|x) ‖ p(z)) (1)

It can be shown that log pθ(x) ≥ L(θ, φ); thus, to train the network, a sample-based estimate of the
ELBO is maximized with respect to φ and θ using gradient ascent (Kingma and Welling, 2013).

To backpropagate through the sampling process, we make use of the reparameterization trick (Kingma
and Welling, 2013). For the Normally distributed random variables zijwhere, z

ij
what and zijdepth this is

straightforward. The discrete Bernoulli random variables zijpres are replaced with Concrete variables,
continuous relaxations of Bernoullis to which the reparameterization trick can be easily applied
(Maddison et al., 2016). At validation and test time the Concretes are discretized via rounding.

Experiments

In this section we empirically demonstrate the advantages of SPAIR on a number of different tasks.
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Figure 1: Left: Example input images and reconstructions by SPAIR and AIR. Predicted bounding
boxes are shown in blue, ground-truth boxes in yellow. Right: Average Precision achieved by different
algorithms on a scattered MNIST dataset as the number of digits per image varies.
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Figure 2: Assessing SPAIR’s ability to generalize to images that are both larger and contain more
objects than images seen during training. Left: Average Precision. The 6–10 and 11–15 lines overlap
almost completely. Middle: Absolute difference between the number of objects predicted by the
models and the true number of digits. Right: Mean 0-1 error between the number of objects predicted
by models and the true number of digits.

Comparison with AIR. One of the main benefits that we expect to gain from SPAIR’s spatial
invariance is significantly improved ability to discover and detect objects in many-object scenes. To
test this, we trained both AIR and SPAIR on (48, 48) images each containing scattered MNIST digits
of size (14, 14). The goal is to have the models output accurate bounding boxes for the digits in each
image, without ever having access to ground-truth bounding boxes. In order to probe the effect of the
number of objects per image on model performance, we used 5 different training conditions; in each
condition, the images contain a different number of digits, ranging from 1 to 9. As a performance
measure we use an adapted version of the Average Precision between the bounding boxes predicted
by the model and the ground-truth bounding boxes, commonly used in the supervised object detection
literature (Everingham et al., 2010).

To simplify the comparison with AIR, we fixed the number of steps executed by AIR’s recurrent
network to the true number of objects in the image, effectively “telling” AIR how many objects
are present. A variant of AIR called Difference Attend, Infer, Repeat (DAIR) (Eslami et al., 2016)
was also tested and provided with this same information. We also constructed a simple baseline
method which we call ConnComp which detects objects by finding connected components in an
image. Success of this method can be used as a measure of the difficulty of the dataset: it will be
successful to the degree that objects do not overlap and are easy to segment.

Results, shown in Figure 1, clearly demonstrate that on this task, SPAIR significantly outperforms all
tested algorithms when the images contain many objects.

Generalization. Another hypothesized advantage of SPAIR’s spatial invariance is a capacity for
generalizing to images that are larger and/or contain different numbers of objects than images encoun-
tered during training. Here we test this hypothesis. We created three different training datasets, each
consisting of small random crops (size (48, 48)) of larger images (size (84, 84)); the large images
contain randomly scattered MNIST digits. In each training condition, the large pre-crop images con-
tained different numbers of digits: either 1–5, 6–10 or 11–15 digits. To test generalization ability, the
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models then were tested on large pre-crop images containing between 1 and 20 digits. In addition to
AP, we also tracked how well the algorithms performed at guessing the number of objects in the scene.

Figure 3: Example images from Space Invaders
(left), and reconstructions (middle) and object
bounding boxes (right) yielded by SPAIR.

Results of this experiment, shown in Figure 2,
demonstrate that SPAIR models have significant
generalization ability. The performance of all
SPAIR models degraded gracefully as the number
of digits per test image increased, even well above
the maximum number of digits seen during train-
ing. There is no significant difference between
the performance of models trained on the 6–10
digit condition compared with models trained on
the 11–15 digit condition. Models trained on the
1–5 digit condition exhibited lower performance
when applied to images containing large numbers
of digits, presumably because training experience
did not equip them to deal with densely packed
digits.

Space Invaders. To push the scaling capabilities
of SPAIR further, we trained it on images from
the Space Invaders Atari game using the Arcade
Learning Environment (Bellemare et al., 2013),
collected using a random policy. The network was
trained on random crops of size (48, 48), but at
test time we had the network process full images,
which have size (210, 160). Qualitative results are
given in Figure 3.

Conclusion

In this paper, we introduced a novel architecture for unsupervised object detection which combines
the unsupervised trainability of AIR with the spatial invariance properties of recent supervised object
detection architectures such as YOLO. We showed empirically that of this spatial invariance allows
for greatly improved scaling; in particular, we showed that our architecture outperforms competing
approaches for images with many objects, and that it can generalize to images that are larger and
more complex than images seen during training.
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