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Abstract

We introduce a neural network architecture that models the human physical reason-
ing process: given an observation of a physical system, an encoder compresses it
into a simple latent representation; a decoder is asked questions about the physical
system that must be answered based only on the latent representation. This is
analogous to the human process of describing a physical system by a few character-
istic properties that suffice to predict the future behaviour. For a variety of simple
physical systems, the network finds, in a fully unsupervised way, the physically
relevant parameters, exploits conservation laws to make predictions, and can be
used to gain conceptual insights — for example, the network allows us to recover
the heliocentric model of the solar system only from observations made from Earth.
On a theoretical level, we formalize the idea of a “simple” physical representation
and we analyze it using methods from differential geometry. Our work provides a
first step towards understanding the representations of physical data used by deep
neural networks.

In an overview of challenges for artificial intelligence in the near future [1], Lake et al. wrote:
“For deep networks trained on physics-related data, it remains to be seen whether higher layers
will encode objects, general physical properties, forces and approximately Newtonian dynamics.”

In this work, we provide a first step towards solving this question. We show that, in the case of simple
systems, neural networks can be used to discover the physical properties and physical concepts we
are used to from physics textbooks from experimental data without providing any prior knowledge
about mathematics or physics. This is in contrast to most of the previous work that applies neural
networks as black box predictors or uses some mathematical or physical prior-knowledge (for a
detailed comparison and references, see our paper at arXiv:1807.10300).

∗These authors contributed equally to this work.

For the full technical version, see arXiv:1807.10300. The source code is available at https://github.com/
eth-nn-physics/nn_physical_concepts.

https://arxiv.org/abs/1807.10300
https://github.com/eth-nn-physics/nn_physical_concepts
https://github.com/eth-nn-physics/nn_physical_concepts


(a) Human learning. (b) Neural network structure for SciNet.

Figure 1: Learning physical representations. (a) A physicist compresses experimental observations
into a simple representation. When later asked any question about the physical setting, the physicist
should be able to produce a correct answer using only the representation and not the original data.
For example, the observations may be the first few seconds of the trajectory of a particle moving
with constant speed; the representation could be the parameters “speed v” and “initial position
x0” and the question could be “where will the particle be at a later time t′?” (b) In our neural
network, observations are encoded as real parameters fed to an encoder (a feed-forward neural
network), which compresses the data into a latent representation. The question is again encoded in a
number of real parameters, which, together with the representation, are fed to the decoder network to
produce an answer. Note that the number of layers and neurons depicted is just an example, and not
representative.

1 Network structure and training

We introduce a neural network architecture, which we call SciNet for brevity, which mimics a
physicist’s modelling process (Figure 1a), and apply it to study various physical scenarios. For a
purely input-output (black box) analysis, the modelling process of SciNet can be seen as a map
F : O × Q → A from the sets of possible observations O and questions Q to the set of possible
answers A. We can split this map into an encoder E : O → R mapping the original observation
to a compressed latent representation R followed by a decoder D : R × Q → A that takes the
representation and the question to produce an answer.2 The corresponding network structure is
shown in Figure 1b. A similar network architecture was recently applied for scene representation and
rendering [3]. We use fully connected feed-forward neural networks to implement the encoder and
the decoder of SciNet. It is this decomposition, F (o, q) = D(E(o), q), that will allow us to interpret
the network’s learned representation, by analyzing how it changes as we tweak known parameters of
the setting.

We train SciNet with data samples of the form (o, q, acor(o, q)), where the observation o and question
q are chosen from the sets O and Q of all possible observations and questions, respectively, and
where acor(o, q) denotes the correct reply to question q given observation o. The structure of the
training data and of the network does not fall into the standard categorisation of “unsupervised”
versus “supervised”. However, SciNet can be regarded as a generalisation of the idea of autoencoders
for all examples presented here, since the answers to the questions correspond to subsets of collected
measurement data and do not require human labelling. In this sense, the training is unsupervised.

2 Minimal uncorrelated representation

We use methods of disentangling variational autoencoders [2, 4–6] to encourage our network archi-
tecture to learn “simple” latent representations, which we formalize as follows. An uncorrelated
(sufficient) representation for the input data set O with respect to a set of questions Q and described
by a random variable R (whose distribution is determined trough the distribution of the input data
and the encoder mapping E : O → R) is defined by the following properties:

1. Sufficient (with smooth decoder): There exists a smooth map D : R×Q 7→ A such that
D(E(o), q) = acor(o, q) for all possible observations o ∈ O and questions q ∈ Q .

2For our implementation, we use stochastic mappings as it is common for variational autoencoders [2].
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(a) Trajectory prediction of SciNet. (b) Representation learned by SciNet.

Figure 2: Damped pendulum. SciNet is fed a time series of the trajectory of a damped pendulum. It
learns to store the two relevant physical parameters, frequency and damping, in the representation,
and makes correct predictions about the pendulum’s future position. (a) Here, the spring constant is
κ = 5kg/s2 and the damping factor is b = 0.5kg/s. SciNet’s prediction is in excellent agreement with
the true time evolution. (b) The plots show the activations of the three latent neurons of SciNet as a
function of the spring constant κ and the damping factor b. The first two neurons store the damping
factor and spring constant, respectively. The activation of the third neuron is close to zero, suggesting
that only two physical variables are required. On an abstract level, learning that one activation can be
set to a constant is encouraged by searching for uncorrelated latent variables, i.e., by minimizing the
common information of the latent neurons during training.

2. Uncorrelated: The latent variables, described by random variables R1, R2, . . . , R|R|, are
mutually independent.

We define a minimal uncorrelated representation R as an uncorrelated (sufficient) representation
with a minimal number of latent parameters |R|, i.e., there does not exist a minimal uncorrelated
representation with less than |R| latent neurons. This formalizes what we consider to be a “simple”
representation of (physical) data.

Without the assumption that the decoder is smooth, it would, in principle, always be sufficient to
have a single latent variable, since a real number can store an infinite amount of information. Hence,
methods from standard information theory, like the information bottleneck [7], are not the right tool
to give the number of variables a formal meaning. In the full technical version, we use methods from
differential geometry to show that the number of variables |R| in a minimal (sufficient) representation
corresponds to the number of relevant degrees of freedom in the observation data required to answer
all possible questions.

3 Results

We train SciNet with raw (simulated) experimental data from a variety of simple systems in classical
and quantum mechanics and extract conceptual information from the learned representation:

1. The representation stores the physically relevant parameters, like the frequency of a pendu-
lum, which it recovers from a time series of its position (see Figure 2).

2. SciNet finds and exploits conservation laws: it stores the total angular momentum to predict
the motion of two colliding particles.

3. Given measurement data of a simple quantum mechanical system, SciNet finds a minimal
representation of it, correctly recognizing the underlying degrees of freedom.

4. Given a time series of the positions of the Sun and Mars as observed from Earth, SciNet
discovers the heliocentric model of the solar system — that is, it encodes the data into the
angles of the two planets as seen from the Sun.
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4 Related work

Independently of our work, physical variables were extracted in an unsupervised way from time series
data of dynamical systems [8]. The network structure used in [8] is built on interaction networks [9–
11] and it is well adapted to physical systems consisting of several objects interacting in a pair-wise
manner. The prior knowledge included in the network structure allows the network to generalise to
situations that differ substantially from those seen during training. Where the focus in [8] is on good
generalization properties, our aim was to discover physical properties and concepts without putting
prior knowledge about the physical system into the network structure.

5 Conclusion

The main aim of this work is to show that neural networks can be used to discover physical concepts
without any prior knowledge. To achieve this goal, we introduced a neural network architecture that
generalizes autoencoders. The examples illustrate that this architecture allows us to extract physically
relevant data from experiments, without imposing further knowledge about physics or mathematics.

Moreover, we formalized the notion of a “simple representation” as a minimal uncorrelated repre-
sentation that is sufficient with respect to a fixed set of questions and investigated its properties with
methods from information theory and differential geometry. This generalizes the idea of learning a full
representation of some given data and we expect it to be applicable to different tasks in representation
learning.
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