Imagining hidden supporting objects in tabletop
scenes

Hector Basevi AleS Leonardis
School of Computer Science School of Computer Science
University of Birmingham University of Birmingham
West Midlands, United Kingdom West Midlands, United Kingdom
h.r.a.basevi@cs.bham.ac.uk a.leonardis@cs.bham.ac.uk

Abstract

Understanding of complex disordered piles of objects can require consideration
of object support relations contributing to the stability of the scene. Such support-
ing objects are often partially occluded or completely hidden. We explore how
supporting hidden objects may be efficiently imagined. We evaluate existing state-
of-the-art regression and generative adversarial machine learning frameworks and
demonstrate that neither are sufficient to imagine stable supporting hidden objects.
We propose a novel framework incorporating an explicit stability learning signal.
The addition of this signal biases the imagined object distribution strongly towards
objects with a large flat base and low centre of gravity, resulting in maximally
supported scenes.

1 Introduction

Understanding of complex scenes is a difficult problem of particular relevance to embodied scenarios
where the potential consequences of interactions with scenes must be considered. Occlusion is a
major challenge for visual inference and is connected to physical inference because objects involved
in physical support of a scene are often themselves occluded. In extreme cases supporting objects can
be completely invisible.

Existing systems for physical scene understanding have only partially addressed this issue. Many
algorithms for physical scene parsing and understanding focus only on situations where objects are
partially or completely visible [[1, 2,13, 4], and those that consider hidden objects do so via a complex
and computationally expensive iterative process of object proposal and hypothesis evaluation [3]].
We explore whether imagination of hidden supporting objects can be performed in a feed-forward
generative fashion using artificial neural networks. We further explore whether learning from data
drawn from a distribution of stable scenes is sufficient, and whether a separate learning signal from a
pre-existing stability estimation model can lead to more stable imagined objects and scenes.

Our contributions are as follows:

1. We present a novel scenario and dataset for this task.
2. We show that models trained by regression do not imagine hidden objects.

3. We show that conditional generative adversarial networks (cGANs) [6} [7]] trained on distri-
butions of stable scenes do imagine hidden objects.

4. We present a framework for training a cGAN which incorporates generator stability condi-
tioning, and discriminator supervision from a pre-existing stability estimation model.

5. We show that incorporating a pre-existing stability estimation model improves scene stability.
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2 Scenario

Support object imagination is tested by imagining hidden parts of physically stable tabletop scenes
composed of household objects (see fig. 1). These scenes are generated using random combinations
of objects in random but physically stable poses, which removes any semantic content from the data to
encourage trained models to make use of stability information. Scenes contain between a single object
and 25 objects. These more complex scenes contain significant occlusion and some contain hidden
supporting objects (determined by removing the hidden objects and evaluating the consequences via
simulation). The task is to produce a scene description from an RGB-D image containing visible
objects and potential hidden objects. To prevent visual complexity from confounding the experiments,
a 2D segmentation of the image into object types is assumed.

3 Object imagination models and design

Scenes are represented via voxel grids of voxel occupancy with a channel for each object type (see
fig. 1). The task is to take as input a partial voxel grid, containing an input channel indicating voxels
which are unknown because they lie behind the visible surfaces, and produce complete voxel grids,
which are then parsed into object types and poses by a separate algorithm based on an iterative closest
point algorithm.

(a) Visual data (b) Explanation (¢) Simulation

Figure 1: Input visual data, an explanation for the scene, and the result of a physical simulation of
the scene to evaluate its physical stability. The visual data consists of an RGB image, a depth image,
a 2D semantic segmentation, and a 3D visible surface. The yellow region of the 3D representation
corresponds to occluded/unexplained regions. The explanation consists of a 3D volumetric represen-
tation and a set of parsed object types and poses. This parsing can be physically simulated to evaluate
stability via object displacement.

Three types of models are compared: regression via voxel error (VER), sampling via Conditional [[6]]
Improved Wasserstein GAN [8] (CWGAN), and a novel sampling model (S-CWGAN) conditioned
on a separate stability signal with stability supervision provided by a pre-trained stability estimation
model (see fig. 2).

e VER is trained to produce a ground truth complete voxel grid from a partial voxel grid via
least squares regression.

o CWGAN is trained to sample complete voxel grids conditioned on a partial voxel grid using
a conditional Wasserstein generative adversarial network framework.

o S-CWGAN is additionally conditioned on a desired scene stability, and the discriminator is
conditioned on scene stability supervision produced by a scene stability estimation model.

VER and CWGAN are implemented identically to S-CWGAN, but with unnecessary S-CWGAN
components removed (stability conditioning and adversarial components for VER, and stability
conditioning and stability supervision for CWGAN).

The scene stability estimation model is trained as a WGAN critic on a separate dataset of scenes.
These scenes consist of stable scenes and modified versions on which one of two types of perturbations
is applied:

1. The pose of one of the scene objects is randomly perturbed.

2. One of the scene objects is removed.

The first type of perturbation enables the stability estimation model to identify instabilities arising
from object intersections and unstable orientations. The second type of perturbation enables the
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Figure 2: Schematic of S-CWGAN model including stability estimation signal.
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stability estimation model to identify instabilities arising from complete lack of support. The resulting
set of scenes are split into unstable and stable subsets for training based on object movement during
simulation. As a WGAN critic, the stability estimation model is regularised to be Lipschitz-continuous
which is expected to improve the quality of the learning signal for the object imagination models.

4 Results

The object imagination dataset consists of 3,900 scenes in a 8:1:1 training:validation:testing split.
Each model was trained for 25 epochs, and evaluated using semantic, geometric, imagination, and
stability metrics:

Semantic error: The fraction of pixels with semantic labels differing from the ground truth labels.
Geometric error: The average pixel depth error.
Imagination: The average number of hidden objects imagined.

Stability: The average scene stability for scenes where the ground truth contains hidden objects.

The results show that VER produces slightly better visible geometric and semantic fidelity than
the sampling models (see fig. 3), but does not imagine hidden objects (see fig. 4). CWGAN does
imagine hidden objects, but imagines fewer than the ground truth and the resulting scenes are unstable.
S-CWGAN imagines similar numbers of objects to the ground truth, and imagined scenes are more
stable than CWGAN.
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Figure 3: Depth and mislabeling fraction for ground truth and all explanation models.

S-CWGAN was probed to explore the effect of the random latent input, and the stability conditioning.
We found that the latent vector appears to represent noise and minor deformations to the scene,
rather than different collections of hidden objects. We hypothesise that this is a result of the cGAN
framework and the strong learning signal provided by the stability estimation model. Sampling
different input stability values has large effects on the imagined scenes, resulting in boxes on their
sides (large flat contact area, low centre of mass) for high stability values and small object fragments
for low stability values.
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Figure 4: Number of hidden objects and maximum object displacement in simulation for all explana-
tion models.

5 Conclusion

We have demonstrated that regression models (VER) are unsuited to imagining hidden objects, and
that generative models trained on sets of stable scenes without an explicit stability learning signal
(CWGAN) do generate hidden objects but generate fewer than originally present. Adding an explicit
stability learning signal (S-CWGAN) results in generation of similar numbers of hidden objects to
those originally present, and more stable scenes. The stability signal also induces a strong preference
for imagining boxes on their sides, which are extremely stable.
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