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Abstract

Inferring universal laws of the environment is an important ability of human
intelligence as well as a symbol of general AI. In this paper, we take a step toward
this goal such that we introduce a new challenging problem of inferring invariant
physical equation from visual scenarios. For instance, teaching a machine to
automatically derive the gravitational acceleration formula by watching a free-
falling object. To tackle this challenge, we present a novel pipeline comprised of
an Observer Engine and a Physicist Engine by respectively imitating the actions
of an observer and a physicist in the real world. Generally, the Observer Engine
watches the visual scenarios and then extracting the physical properties of objects.
The Physicist Engine analyses these data and then summarizing the inherent laws
of object dynamics. Specifically, the learned laws are expressed by mathematical
equations such that they are more interpretable than the results given by common
probabilistic models. Experiments on synthetic videos have shown that our pipeline
is able to discover physical equations on various physical worlds with different
visual appearances.

1 Introduction

Inference is one of the most basic and significant aspects of human intelligence [1] as well as AI
[2]. As a high-level aspect of inference, the induction of universal laws from observations of our
world is both the core basis and the goal of the scientific research. For example, Sir Isaac Newton
saw an apple falling down and then was inspired to discover the law of gravitation. However, for a
computing machine, the induction of laws based on visual observations is still a very challenging and
open problem, and has been rarely explored by the existing literature until today.

In this paper, we introduce a new problem that we attempt to teach machine to automatically derive
mathematical expressions of object dynamics from videos of a physical world. In contrast to the most
recent approaches [3–5] which explores to learn object mechanical behaviors by the black box of
deep neural networks, we aim at explicitly presenting the symbolic expressions of latent physical
laws, leading to a more interpretable model and more visualizable results. A pioneer work [6] learns
to derive mathematical equations from the data of physical experiments. While in this work, we
propose to learn mathematical expressions directly from complicated videos.

Toward this goal, we propose a novel pipeline comprised of an Observer Engine and a Physicist
Engine. The Observer Engine acts like an observer that watches the videos of a physical scenario

∗Equal contributions. Work done when Siyu Huang and Zhi-Qi Cheng visited Carnegie Mellon University.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

mailto:siyuhuang@zju.edu.cn
mailto:zhiqicheng@gmail.com
mailto:xilizju@zju.edu.cn
mailto:wuxiaohk@gmail.com
mailto:zhongfei@zju.edu.cn
mailto:alex@cs.cmu.edu


(a) Observer Engine (b) Physicist Engine

Figure 1: Our model is comprised of (a) the Observer Engine and (b) the Physicist Engine. At left,
a video depicts that an object is in free-falling. The Observer Engine uses deep neural networks to
extract the physical properties of the object. The Physicist Engine learns a mathematical expression
of the object dynamics by evolving a syntax tree based on the property variables.

and extracts the physical properties of objects in that scenario. Then the Physicist Engine imitates a
physicist that summarizes the observed data and finally derives the mathematical equations.

In the experiments, we evaluate our pipeline on synthetic videos of multiple physical scenarios,
showing that it is able to learn precise mathematical equations on these physical worlds with diverse
visual appearances. We also explore several variants of models for the Observer Engine and the
Physicist Engine respectively, so as to quantitatively establish baselines for relevant research in the
future.

Our contributions are three-fold. First, we introduce a new problem of learning mathematical
equations of object dynamics from videos, taking a step toward the automatic induction of univer-
sal laws for general AI. Second, we propose a novel pipeline to tackle this challenging problem.
Third, empirical studies demonstrate the effectiveness of our approach on several synthetic physical
scenarios.

2 Model

Our model learns to infer the inherent mathematical equation from video frames of a physical system.
It consists of an Observer Engine and a Physicist Engine.

Observer Engine The Observer Engine acts like an observer that watches the videos of a physical
world, and at the same time records the physical-property variables. As illustrated in Fig. 1(a),
it captures the physical properties of the kinetic objects and the environment in videos. In this
work, we use the Faster-RCNN [7] model to detect an object and localize its position ~d according
to coordinates of the bounding-boxes. In order to get a more precise object position, we employ a
two-stage approach to refine the position on coarse-to-fine spatial scales. Specifically, a Faster-RCNN
detector is applied on an image to get a coarse window of an object, then another Faster-RCNN
detector is applied on the window to get a fine bounding-box. The two-stage approach ensures a
precise object localization and a speed up of the detection procedure. The velocity ~v of an object
is computed by ~v = ∆~d/∆t, where ∆t is the time interval between two video frames. Observation
data ~d, ~v, and ∆t are fed to the Physicist Engine serving as the independent variables.

Physicist Engine The Physicist Engine acts like a physicist that infers the equation based on the
observations given by the Observer Engine. It takes a set of objects’ physical properties (output
from the visual engine applied to a series of videos) as input. It outputs the equation between
displacement ∆~d and the independent variables. In this work, we adopt symbolic regression with
genetic programming (GP) [8, 9] for the inference of mathematical equation, implemented based on
GPlearn Toolkit2.

2http://gplearn.readthedocs.io/en/stable/index.html
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Figure 2: An example of the synthetic physical scenario and the learned equations.

As illustrated in Fig. 1(b), the formula is represented as a syntax tree. The variables, denoted as the
round nodes, are leaves of the tree. The mathematical operations, denoted as the square nodes, connect
the independent variables. Our goal is to find the best formula consisting of arbitrary independent
variables and mathematical operations to minimize the mean absolute error (MAE) corresponding
to the given target. At the very beginning, a population of formulas is randomly initialized. In an
evolutionary manner, GP evolves the fittest ones of every generation until convergence. More details
of GP are discussed in our Appendix A.3.

3 Experiments

Qualitative example We conduct experiments on several different types of physical scenarios. In
each scenario, there is an object obeying the basic dynamic equation as

∆~d = ~v∆t +
1

2
~a∆t2 (1)

Fig. 2 shows an example of the synthetic physical scenario. The object is connected to a horizontal
wall with a visible spring obeying Hooke’s law. The accelerated velocity ~aspring is

~aspring =

[
0

−k · (dy −D −X) /m

]
(2)

The Hooke’s constant k, attachment point y-coordinate D, and equilibrium distance X are constants.
In this experiment, we set k = 2, D = −15000, and X = 5000.

As shown in the left part of Fig. 2, the Observer Engine detects the bounding boxes (green) of objects,
providing precise object positions to the Physicist Engine. At the right part of Fig. 2, we show the
mathematical equations and the syntax trees learned by the Physicist Engine. The Physicist Engine
presents precise dynamic equations, even though the dynamic equation of ∆dy is somewhat complex.
Not only the symbolic relationships are correctly learned, the physical constants in mathematical
equations are also accurately estimated by our method. More examples of synthetic physical scenarios
are shown in the Appendix B.1.

Pipeline study Table 1 shows the ablation study of different baseline methods for our pipeline. The
baseline methods of two engines are pairwise combined to be evaluated in all the physical scenarios.
For the Physicist Engine, we study several typical regression methods for a comparison with our used
symbolic regression method, including (1) linear regression, (2) ridge regression, (3) decision tree,
and (4) random forest. For the Observer Engine, we study two baseline methods for a comparison
with our used Two-stage Detector, including (a) Single Detector which is a basic Faster R-CNN [7]
model and (b) Detection + Segmentation.

We use R2 coefficient score as the metric to evaluate the fitting goodness in this study. It is interesting
that when working with Single Detector or Detection + Segmentation, sometimes the methods of
Physicist Engine perform better than the ground-truth equation. It is mainly because these methods
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Table 1: Ablation study of our pipeline (R2 score). Baseline methods of the Observer Engine and the
Physicist Engine are row-wise listed and column-wise listed respectively. LR: linear regression; RR:
ridge regression; DT: decision tree; RF: random forest; SR: symbolic regression; GT: ground-truth
equation.

LR RR DT RF SR GT

Single Detector 0.917 0.908 0.812 0.932 0.926 0.904
Detection + Segmentation 0.958 0.958 0.832 0.922 0.954 0.954
Two-stage Detector 0.945 0.944 0.960 0.983 1.000 1.000

Ground-truth Position 0.945 0.944 0.970 0.984 1.000 1.000

eliminate some position errors in fitting. We observe that our pipeline (a combination of Two-stage
Detector and SR) gets an 1.000 R2 score, as it successfully identifies all of the dynamic equations
as well as accurately estimates the constants. Comparing Two-stage Detector with Ground-truth
Position and comparing SR with GT, both of them show performances close to the ground-truth,
indicating that they have good compatibilities with different methods of the other engine.

4 Discussion

We have introduced a new problem of deriving mathematical equations from physical scenarios,
taking a step toward the goal of reasoning about universal laws from a complex environment. We
have presented a pipeline including an Observer Engine and a Physicist Engine to tackle this problem
for the first time. In the experiments, we have shown that our pipeline is able to perceive dynamic
equations on synthetic physical scenarios with noisy visual appearances. Ablation studies conducted
on combinations of baselines further demonstrate the effectiveness of our pipeline. By combining
deep learning, symbolic learning, and evolutionary algorithm, our approach shows the potential of a
hybrid machine learning system for AI reasoning.

In the future, an important work is to demonstrate the proposed pipeline in real-world scenarios
which may have more unknown noise than the synthetic data. It will also be important to develop
techniques to handle the multi-object physical system [3–5], in which there are interactions between
objects other than the dynamics of a single object, such that we need to learn a composite set of
dynamic laws in a scenario.
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